Dissecting the Baryon Cycle and ISM Properties with JWST NIRISS and NIRSpec Spectroscopy

Collaborators: **Xianlong He**, **Sijia Li**, Cheng Cheng, Junqiang Ge, Haojing Yan, +GLASS team UCAS/NADC/BNU

Xin Wang

Collaboration Workshop on Cosmology and Galaxy Formation @ SJTU

Baryon Cycle (in the eyes of an artist)

Baryon Cycle (in the eyes of an astrophysicist)

Baryon Cycle

Interstellar Medium (ISM)

Stellar Evolution 10 Mpc

z=2.91

log10(M)=11.3

SFR=472.9

sSFR=2.17Gyr

Gas temperature

Stellar light

Gas metallicity

Gas density

Baryon Cycle

Interstellar Medium (ISM)

Stellar Evolution

Primary Target and Observing Modes

- NIRISS Wide Field Slitless Spectroscopy R~150 (F115, F150W, F200W): 35ks
- Parallel NIRCAM imaging (F090W, F115W, F150W, F277W, F200W, F356W, F444W) 30ks; mAB~29
- NIRSPEC MOS R~2700 (F100LP, F170LP, F290LP): 52ks
- Parallel NIRCAM imaging (F090W, F115W, F150W, F277W, F200W, F356W, F444W) 50ks; mAB~29.4

GLASS-JWST

JWST and HST footprints in the Abell 2744 galaxy cluster field: • solid: primary, dashed: coordinated parallel red: epoch 1 of GLASS-JWST. primary: NIRISS WFSS, parallel: **NIRCam** imaging • yellow: epoch 2 of GLASS-JWST. primary: NIRSpec MSA, parallel: NIRCam imaging green: Hubble Frontier Field deep imaging

Treu et al. (2022)

JWST/NIRISS Slitless Spectroscopy of Abell 2744

Based on JWST-ERS-1324, PI: Treu

JWST/NIRISS Slitless Spectroscopy of Abell 2744 GR150C GR150R

Based on JWST-ERS-1324, PI: Treu

Example spectral extractions by Grizli

The first spatially resolved analysis from JWST grisms

(2022a)arXiv:2207.13113

Spectral stacking analysis of 1D grism spectra

- Stacking the optimally extracted 1D spectra of multiple sources within the same stellar mass bin to achieve higher SNR
- Measure the correlation at the population level

He Xianlong, XW et al. in prep

The mass-metallicity relation at high redshifts

The mass-metallicity relation at high redshifts

ISM density measurements from NIRSpec Spectroscopy

ISM density measurements from NIRSpec Spectroscopy

- ISM electron density (n_e) can be probed by the flux ratios of the line doublets of [OII]λλ3727,3730 and [SII]λλ6718,6732
- Isobe et al. (2022) measured n_e using OII doublets from high/medium resolution NIRSpec data

ISM density measurements from NIRSpec Spectroscopy

- GLASS-JWST acquires 17.7k sec in all three high-res gratings (12 exp per grating)
- data reduced using the msaexp software with optimal extraction

a z~1.86 galaxy with M* ~ 2e8 M_{\odot}

Li Sijia, XW et al. in prep

ISM electron density measurements from NIRSpec Spectroscopy

Line	$F_{err,gauss}$	$\frac{S}{N}$ line	z_{line}	Eqw	Eqw_{err}	F_{gauss}	$\sigma_{i,err}$
[<i>SII</i>]6718Å	0.7863	26.1578	-6.5735e-04	10.6536	0.3699	22.6424	0.0775
[SII]6732Å	0.7732	21.4849	-6.1716e-04	8.6046	0.3638	18.2876	0.0912

Evolution of ISM density with sSFR and z

Li Sijia, XW et al. in prep

- positive correlation between n_e and sSFR
 => dense ISM conducive to star formation
- redshift evolution of n_e consistent with galaxy size evolution

A He II λ 1640 emitter with blue UV spectral slope at z=8.16Wang et al. 2022b

- ,,

- a strong emission-line galaxy at z=8.16
- lensed by the foreground galaxy cluster ulletRXJ2129.7+0005 at *z*=0.234
- data acquired by DD-2767 (PI: Kelly) •

A He II λ 1640 emitter with blue UV spectral slope at z=8.16 Wang et al. 2022b

Extremely blue UV spectral slope

RXJ2129-z8HeII is one of a kind!

- 1. It shows a strong He II λ 1640 line emission, with one of the largest equivalent widths (~21 Å in the rest frame) and high flux ratios versus metal/hydrogen lines.
- 2. It has one of the steepest continuum slope of rest-frame UV spectrum among galaxies spectroscopically confirmed in the epoch of reionization.
- 3. It belongs to the intrinsically faint galaxy population (below the characteristic luminosity), has high flux ratio of the triply and doubly ionized oxygen lines ([O III]/[O II]) in the rest-frame optical with high equivalent width.

Strong He II **\lambda**1640 line

- One of the highest redshift He II detection in the literature:
 - line flux (corr. for magnif and dust): 120±22 ×10⁻²⁰ erg s⁻¹cm⁻²
 - equivalent width: 21±4 Å
- Possible causes for strong He II emission:
 - Wolf-Rayet stars, stripped stars
 - X-ray binaries
 - active galactic nuclei
 - **Pop III stars** (high-mass, metal-free, first generation stars)

Photoionization models for Pop III stars

O32 alone not a good proxy of Pop III !!!

Clumpy morphology

PopIII star formation rate and total mass

RXJ212	29-z8HeII	
	1"	
Z _{spec} =	8.1623	•

[\] where Pop III likely originates?

IMF mass range	Mass Loss	$L_{\rm norm, 1640}$	SFR _{PopIII}	$f_{ m PopIII}$
		[ergs s ⁻¹]	$[\mathrm{M}_{\odot}~\mathrm{yr}^{-1}]$	
$1 \lesssim M/M_{\odot} \lesssim 500$	No	5.7×10^{40}	5.9	62%
$50 \lesssim M/M_\odot \lesssim 500$	No	3.5×10^{41}	1.0	10%
$1 \lesssim M/M_\odot \lesssim 500$	Yes	1.8×10^{41}	1.8	19%
$50 \leq M/M_{\odot} \leq 1000$	Yes	1.4×10^{42}	0.2	2%

• based on the PopIII stellar evolution models of Schaerer 2002

- observed line ratios well reproduced by the Pop III models with mass loss and one tenth ISM metallicity
- total mass: 7.8 \pm 1.4 \times 10⁵ M_{\odot} assuming Eddington limit

Conclusions

- Part I: Metallicity radial gradients from NIRISS WFSS.
 - secure first metal gradient measurement at $z \ge 3$ with JWST
 - inverted gradient caused by low-Z gas inflow from tidal interactions
 - JWST's exquisite resolution and sensitivity resolve $z\sim3$ dwarf in ≥50 elements
- Part II: ISM electron densities from NIRSpec high-resolution spectroscopy.
 - obtain n_e for 10 galaxies based on [SII] flux ratios
 - find positive correlation between n_e and sSFR
 - sharper redshift evolution of n_e derived from [SII] than that from [OII]
- Part III: An intriguing He II λ 1640 emitter at z=8.16.
 - one of the highest He II detections in the literature
 - one of the steepest UV slopes among spec. confirmed galaxies at z≥7
 - enticing implication for the coexistence of PopIII and normal stars

Thanks for your attention!

Backup slides

Spectral stacking analysis of 1D grism spectra

- Stacking the optimally extracted 1D spectra of multiple sources within the same stellar mass bin to achieve higher SNR
- Measure the correlation at the population level

He Xianlong, XW et al. in prep

Line flux of LMfit vs Grizili

Grizli models higher emission line flux

 $lg(grizli) = lg(lmfit) + (0.168 \pm 0.021)$ or:grizli = lmfit × (1.473^{+0.072}_{-0.070})

• Pearson/Spearman r correlation: 0.889,0.872, with p-value both ~1e-16

The diverse chemical profiles of high-z galaxies

$$z = 1.25$$

metal-poor
center
metal-rich
outskirts

The reason for GLASS-Zgrad1 showing inverted gradients

Wu et al. (2022)

 metal-poor gas inflows to the inner galaxy disks induced by the strong tidal torques of close gravitational interactions

Wang et al. (2022a)

motivation of having both NIRISS and NIRSpec spectra

- real data from HST WFC3 grisms (progID 13459, PI: Treu)
- slit size: 0.2"x0.46", red on bulge, blue on disk
- clear metallicity, dust and SFR gradient from bulge to disk

motivation of having both NIRISS and NIRSpec spectra

0.0

 $MIIH\alpha MII$

1.54

[SII][SII]

1.58

1.56

Observed wavelength $[\mu m]$

- WFSS cannot distinguish SF/AGN due to spec. reso
- slit spec suffers from slit loss, measurement bias, etc.

combined NIRCam mosaics of A2744

- combing the NIRCam data from multiple programs
- GLASS: green
 - $mAB \sim 29-29.4$
- UNCOVER: blue
 - $mAB \sim 29.8$
- Chen DDT: red
 - $mAB \sim 29$

Discovery of strongly inverted metal gradients at high z

 analytical chemical evolution model of galaxy formation assuming insideout growth predicts initially steep negative gradients flatten over time

Discovery of strongly inverted metal gradients at high z

- analytical chemical evolution model of galaxy formation assuming insideout growth predicts initially steep negative gradients flatten over time
- cosmological hydrodynamic simulations instead predict that metallicities are initially well mixed by strong feedback and later locked into a negative slope

Discovery of strongly inverted metal gradients at high z

- analytical chemical evolution model of galaxy formation assuming insideout growth predicts initially steep negative gradients flatten over time
- cosmological hydrodynamic simulations instead predict that metallicities are initially well mixed by strong feedback and later locked into a negative slope
- we obtained the first measurements with sub-kpc spatial resolution of strongly inverted (i.e. positive) metal gradients in dwarf galaxies

1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts

$$Z = Z_f \left[1 - \left(\frac{M_g}{M_i}\right)^{\left[f_i(1-z_i) - f_o(1-z_o)\right]/(\alpha - f_i + f_o)} \right]$$

Erb (2008) chemical evolution model

gas inflows alone cannot explain

1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts

$$Z_{\text{gas}} = \left[Z_0 + y\tau_{\text{eq}} \epsilon \left(1 - \exp\left(-\frac{t}{\tau_{\text{eq}}}\right) \right) \right]$$
$$\times \left[1 - \exp\left(\frac{-t/\tau_{\text{eq}}}{1 - \exp(-t/\tau_{\text{eq}})}\right) \right],$$
$$\tau_{\text{eq}} = \frac{1}{\epsilon \left(1 - R + \lambda\right)}.$$

Peng & Maiolino (2014) chemical evolution model

- 1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts
- 2. centrally-directed cold-mode gas accretion driven by the massive dark matter halos underlying galaxy protoclusters

- 1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts
- 2. centrally-directed cold-mode gas accretion driven by the massive dark matter halos underlying galaxy protoclusters

- 1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts
- 2. centrally-directed cold-mode gas accretion driven by the massive dark matter halos underlying galaxy protoclusters
- 3. metal-poor gas inflows to the inner galaxy disks induced by the strong tidal torques of close gravitational interactions

