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Baryon Cycle (in the eyes of an artist)



Baryon Cycle (in the eyes of an astrophysicist)
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GLASS-JWST



JWST and HST 
footprints in the Abell 
2744 galaxy cluster field:
• solid: primary, dashed: 

coordinated parallel
• red: epoch 1 of 

GLASS-JWST. 
primary: NIRISS 
WFSS, parallel: 
NIRCam imaging

• yellow: epoch 2 of 
GLASS-JWST. 
primary: NIRSpec 
MSA, parallel: NIRCam 
imaging 

• green: Hubble Frontier 
Field deep imaging

Treu et al. (2022)



JWST/NIRISS Slitless Spectroscopy of Abell 2744

Based on JWST-ERS-1324, PI: Treu



JWST/NIRISS Slitless Spectroscopy of Abell 2744
GR150C GR150R

Based on JWST-ERS-1324, PI: Treu



F115W GR150C



F115W GR150R



Example spectral extractions by Grizli



The first spatially resolved analysis from JWST grisms
W

ang et al. (2022a) arXiv:2207.13113



The first metal gradient with sub-kpc resolution at z≥3
W

ang et al. (2022a) arXiv:2207.13113



Spectral stacking analysis of 1D grism spectra
• Stacking the optimally extracted 1D spectra of multiple sources within 

the same stellar mass bin to achieve higher SNR
• Measure the correlation at the population level 

He Xianlong, XW et al. in prep



The mass-metallicity relation at high redshifts



The mass-metallicity relation at high redshifts





ISM density measurements from NIRSpec Spectroscopy



ISM density measurements from NIRSpec Spectroscopy
• ISM electron density (n_e) can be probed by the flux ratios of the line doublets of 

[OII]𝞴𝞴𝞴𝞴3727,3730 and [SII]𝞴𝞴𝞴𝞴6718,6732
• Isobe et al. (2022) measured n_e using OII doublets from high/medium resolution 

NIRSpec data



Li Sijia, XW et al. in prep

ISM density measurements from NIRSpec Spectroscopy

a z~1.86 galaxy with M* ~ 2e8 M☉

• GLASS-JWST acquires 17.7k sec in all three high-res gratings (12 exp per grating)
• data reduced using the msaexp software with optimal extraction



ISM electron density measurements from NIRSpec Spectroscopy



R =1.288

ne =150−150+710

R =1.5198

ne = 1−1+69

sources with both OII and SII

z = 1.72854



z = 9.3127



z=4.0199

R>max(R),
ratio exceeds the physical boundary value 



Evolution of ISM density with sSFR and z

• positive correlation between n_e and sSFR  
=>  dense ISM conducive to star formation

• redshift evolution of n_e 
consistent with galaxy size 
evolution

Li Sijia, XW et al. in prep

𝑛𝑛𝑒𝑒 = 10(0.14𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+2.24) n𝑒𝑒 ∼ 1/(1 + 𝑧𝑧)𝑘𝑘



A He II 𝞴𝞴1640 emitter with blue UV spectral slope at 
z=8.16 Wang et al. 2022b

• a strong emission-line galaxy at z=8.16
• lensed by the foreground galaxy cluster 

RXJ2129.7+0005 at z=0.234
• data acquired by DD-2767 (PI: Kelly)



A He II 𝞴𝞴1640 emitter with blue UV spectral slope at 
z=8.16 Wang et al. 2022b



Emission line analyses



Extremely blue UV spectral slope



RXJ2129-z8HeII is one of a kind!
1. It shows a strong He II 𝞴𝞴1640 line emission, with one of the largest equivalent 

widths (~21 Å in the rest frame) and high flux ratios versus metal/hydrogen lines.

2. It has one of the steepest continuum slope of rest-frame UV spectrum among 
galaxies spectroscopically confirmed in the epoch of reionization.

3. It belongs to the intrinsically faint galaxy population (below the characteristic 
luminosity), has high flux ratio of the triply and doubly ionized oxygen lines ([O 
III]/[O II]) in the rest-frame optical with high equivalent width.



Strong He II 𝞴𝞴1640 line
• One of the highest redshift He II 

detection in the literature:
• line flux (corr. for magnif and 

dust): 120±22 ×10−20 erg s−1cm−2

• equivalent width: 21±4 Å
• Possible causes for strong He II 

emission:
• Wolf-Rayet stars, stripped stars
• X-ray binaries
• active galactic nuclei
• Pop III stars (high-mass, metal-

free, first generation stars)



Photoionization models for Pop III stars

O32 alone not a good proxy of Pop III !!!



Clumpy morphology

CompA

CompB



PopIII star formation rate and total mass

• based on the PopIII stellar evolution models of Schaerer 2002
• observed line ratios well reproduced by the Pop III models 

with mass loss and one tenth ISM metallicity
• total mass: 7.8 ± 1.4 × 105𝑀𝑀⊙ assuming Eddington limitwhere Pop III likely originates??



Conclusions
• Part I: Metallicity radial gradients from NIRISS WFSS.

• secure first metal gradient measurement at z≥3 with JWST
• inverted gradient caused by low-Z gas inflow from tidal interactions
• JWST’s exquisite resolution and sensitivity resolve z~3 dwarf in ≥50 elements 

• Part II: ISM electron densities from NIRSpec high-resolution spectroscopy.
• obtain n_e for 10 galaxies based on [SII] flux ratios
• find positive correlation between n_e and sSFR
• sharper redshift evolution of n_e derived from [SII] than that from [OII]

• Part III: An intriguing He II 𝞴𝞴1640 emitter at z=8.16.
• one of the highest He II detections in the literature
• one of the steepest UV slopes among spec. confirmed galaxies at z≥7
• enticing implication for the coexistence of PopIII and normal stars



Thanks for your attention!





Spectral stacking analysis of 1D grism spectra
• Stacking the optimally extracted 1D spectra of multiple sources within 

the same stellar mass bin to achieve higher SNR
• Measure the correlation at the population level 

He Xianlong, XW et al. in prep



Line flux of LMfit vs Grizili
Grizli models higher emission line flux

• Pearson/Spearman r correlation: 0.889,0.872, with p-value both ~1e-16

lg(grizli) = lg(lmfit) + (0.168 ± 0.021)
or:grizli = lmfit × (1.473−0.070

+0.072)



The diverse chemical profiles of high-z galaxies
Sim

ons, Papovich, +C
LEAR

 team
 (2021)



The reason for GLASS-Zgrad1 showing inverted gradients

• metal-poor gas inflows to the 
inner galaxy disks induced by the 
strong tidal torques of close 
gravitational interactions

Li, Wang et al. (2022)

Wang et al. (2022a)

Wu et al. (2022)



motivation of having both NIRISS and NIRSpec spectra

• real data from HST WFC3 grisms (progID 13459, PI: Treu)
• slit size: 0.2”x0.46”, red on bulge, blue on disk
• clear metallicity, dust and SFR gradient from bulge to disk



• WFSS cannot distinguish SF/AGN due to spec. reso
• slit spec suffers from slit loss, measurement bias, etc.

motivation of having both NIRISS and NIRSpec spectra



combined NIRCam mosaics of A2744
• combing the NIRCam data 

from multiple programs
• GLASS: green

• mAB ~ 29-29.4
• UNCOVER: blue

• mAB ~ 29.8
• Chen DDT: red

• mAB ~ 29



Discovery of strongly inverted metal gradients at high z
• analytical chemical evolution model 

of galaxy formation assuming inside-
out growth predicts initially steep 
negative gradients flatten over time
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Discovery of strongly inverted metal gradients at high z
• analytical chemical evolution model 

of galaxy formation assuming inside-
out growth predicts initially steep 
negative gradients flatten over time

• cosmological hydrodynamic 
simulations instead predict that 
metallicities are initially well mixed 
by strong feedback and later locked 
into a negative slope



Discovery of strongly inverted metal gradients at high z
• analytical chemical evolution model 

of galaxy formation assuming inside-
out growth predicts initially steep 
negative gradients flatten over time

• cosmological hydrodynamic 
simulations instead predict that 
metallicities are initially well mixed 
by strong feedback and later locked 
into a negative slope

• we obtained the first measurements 
with sub-kpc spatial resolution of 
strongly inverted (i.e. positive) metal 
gradients in dwarf galaxies

Wang et al. (2019)   arXiv:1808.08800



The reasons for galaxies showing inverted gradients
1. metal-enriched gas outflows 

triggered by powerful galactic 
winds that transport metals from 
galaxy center to outskirts

Wang et al. (2019)

gas inflows alone cannot explain 

Erb (2008) chemical evolution model



The reasons for galaxies showing inverted gradients
1. metal-enriched gas outflows 

triggered by powerful galactic 
winds that transport metals from 
galaxy center to outskirts

Wang et al. (2019)

Peng & Maiolino (2014) chemical 
evolution model



The reasons for galaxies showing inverted gradients
1. metal-enriched gas outflows 

triggered by powerful galactic 
winds that transport metals from 
galaxy center to outskirts

2. centrally-directed cold-mode gas 
accretion driven by the massive 
dark matter halos underlying 
galaxy protoclusters

Li, Wang et al. (2022)



The reasons for galaxies showing inverted gradients
1. metal-enriched gas outflows 

triggered by powerful galactic 
winds that transport metals from 
galaxy center to outskirts

2. centrally-directed cold-mode gas 
accretion driven by the massive 
dark matter halos underlying 
galaxy protoclusters

Li, Wang et al. (2022)

Wang et al. (2022a)



The reasons for galaxies showing inverted gradients
1. metal-enriched gas outflows 

triggered by powerful galactic 
winds that transport metals from 
galaxy center to outskirts

2. centrally-directed cold-mode gas 
accretion driven by the massive 
dark matter halos underlying 
galaxy protoclusters

3. metal-poor gas inflows to the 
inner galaxy disks induced by the 
strong tidal torques of close 
gravitational interactions

Li, Wang et al. (2022)

Wang et al. (2022b)

Wu et al. (2022)
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