Dissecting the Baryon Cycle and ISM Properties with JWST NIRISS and NIRSpec Spectroscopy

Collaborators: Xianlong He, Sijia Li, Cheng Cheng, Junqiang Ge, Haojing Yan, +GLASS team

Xin Wang

UCAS/NAOC/BNU

Collaboration Workshop on Cosmology and Galaxy Formation @ SJTU Jun 20, 2023

Baryon Cycle (in the eyes of an artist)

Baryon Cycle (in the eyes of an astrophysicist)

Baryon Cycle

Interstellar Medium (ISM)

Stellar Evolution 10 Mpc

 $z = 2.91$

 $log_{10}(M_{s}) = 11.3$

SFR=472.9

s SFR=2.17Gvr

Stellar light Gas density

Gas temperature Gas metallicity TRIS

Baryon Cycle

Interstellar Medium (ISM)

Stellar Evolution 10 Mpc

Gas temperature Gas metallicity TRIS

Primary Target and Observing Modes

- **NIRISS Wide Field Slitless** Spectroscopy R~150 (F115, F150W, F200W): 35ks
- Parallel NIRCAM imaging (F090W, \bullet F115W, F150W, F277W, F200W, F356W, F444W) 30ks; mAB~29
- NIRSPEC MOS R~2700 (F100LP, ۰ F170LP, F290LP): 52ks
- Parallel NIRCAM imaging (F090W, ٠ F115W, F150W, F277W, F200W, F356W, F444W) 50ks; mAB~29.4

GLASS-JWST

JWST and HST footprints in the Abell - 2744 galaxy cluster field: • solid: primary, dashed: coordinated parallel • **red**: epoch 1 of GLASS-JWST. primary: NIRISS WFSS, parallel: NIRCam imaging • **yellow**: epoch 2 of GLASS-JWST. primary: NIRSpec MSA, parallel: NIRCam imaging • **green**: Hubble Frontier Field deep imaging

Treu et al. (2022)

JWST/NIRISS Slitless Spectroscopy of Abell 2744

Based on JWST-ERS-1324, PI: Treu

JWST/NIRISS Slitless Spectroscopy of Abell 2744 GR150C GR150R

Based on JWST-ERS-1324, PI: Treu

Example spectral extractions by Grizli

The first spatially resolved analysis from JWST grisms

arXiv:2207.13113

Spectral stacking analysis of 1D grism spectra

- Stacking the optimally extracted 1D spectra of multiple sources within the same stellar mass bin to achieve higher SNR
- Measure the correlation at the population level

He Xianlong, **XW** et al. in prep

The mass-metallicity relation at high redshifts

The mass-metallicity relation at high redshifts

ISM density measurements from NIRSpec Spectroscopy

ISM density measurements from NIRSpec Spectroscopy

- ISM electron density (n_e) can be probed by the flux ratios of the line doublets of $[OII] \lambda \lambda 3727,3730$ and $[SiII] \lambda \lambda 6718,6732$
- Isobe et al. (2022) measured n_e using OII doublets from high/medium resolution NIRSpec data

ISM density measurements from NIRSpec Spectroscopy

- GLASS-JWST acquires 17.7k sec in all three high-res gratings (12 exp per grating)
- data reduced using the msaexp software with optimal extraction

a z~1.86 galaxy with $M* \sim$ 2e8 M \odot

Li Sijia, XW et al. in prep

ISM electron density measurements from NIRSpec Spectroscopy

Evolution of ISM density with sSFR and z

Li Sijia, XW et al. in prep

- positive correlation between n e and sSFR => dense ISM conducive to star formation
- redshift evolution of n e consistent with galaxy size evolution

A He II λ 1640 emitter with blue UV spectral slope at $z=8.16$ Wang et al. 2022b

4

- a strong emission-line galaxy at $z=8.16$
- lensed by the foreground galaxy cluster RXJ2129.7+0005 at *z*=0.234
- data acquired by DD-2767 (PI: Kelly)

A He II λ 1640 emitter with blue UV spectral slope at
z=8.16 wang et a Wang et al. 2022b

Extremely blue UV spectral slope

RXJ2129-z8HeII is one of a kind!

- 1. It shows a strong He II λ 1640 line emission, with one of the largest equivalent widths $(\sim 21 \text{ Å}$ in the rest frame) and high flux ratios versus metal/hydrogen lines.
- 2. It has one of the steepest continuum slope of rest-frame UV spectrum among galaxies spectroscopically confirmed in the epoch of reionization.
- 3. It belongs to the intrinsically faint galaxy population (below the characteristic luminosity), has high flux ratio of the triply and doubly ionized oxygen lines ([O III]/[O II]) in the rest-frame optical with high equivalent width.

Strong He II λ 1640 line

- One of the highest redshift He II detection in the literature:
	- line flux (corr. for magnif and dust): $120\pm22 \times 10^{-20}$ erg s⁻¹cm⁻²
	- equivalent width: $21\pm4\text{ Å}$
- Possible causes for strong He II emission:
	- Wolf-Rayet stars, stripped stars
	- X-ray binaries
	- active galactic nuclei
	- **Pop III stars** (high-mass, metalfree, first generation stars)

Photoionization models for Pop III stars

O32 alone not a good proxy of Pop III !!!

Clumpy morphology

PopIII star formation rate and total mass

• based on the PopIII stellar evolution models of Schaerer 2002

- observed line ratios well reproduced by the Pop III models with mass loss and one tenth ISM metallicity
- where Pop III likely originates?? total mass: $7.8 \pm 1.4 \times 10^5 M_{\odot}$ assuming Eddington limit

Conclusions

- Part I: Metallicity radial gradients from NIRISS WFSS.
	- secure first metal gradient measurement at z≥3 with JWST
	- inverted gradient caused by low-Z gas inflow from tidal interactions
	- JWST's exquisite resolution and sensitivity resolve z~3 dwarf in ≥50 elements
- Part II: ISM electron densities from NIRSpec high-resolution spectroscopy.
	- obtain n e for 10 galaxies based on [SII] flux ratios
	- find positive correlation between n e and sSFR
	- sharper redshift evolution of n e derived from [SII] than that from [OII]
- Part III: An intriguing He II λ 1640 emitter at z=8.16.
	- one of the highest He II detections in the literature
	- one of the steepest UV slopes among spec. confirmed galaxies at z≥7
	- enticing implication for the coexistence of PopIII and normal stars

Thanks for your attention!

Backup slides

Spectral stacking analysis of 1D grism spectra

- Stacking the optimally extracted 1D spectra of multiple sources within the same stellar mass bin to achieve higher SNR
- Measure the correlation at the population level

He Xianlong, XW et al. in prep

Line flux of LMfit vs Grizili

Grizli models higher emission line flux

 $lg(grizli) = lg(lmfit) + (0.168 \pm 0.021)$ or:grizli $= Imfit \times (1.473^{+0.072}_{-0.070})$

• Pearson/Spearman r correlation: 0.889,0.872, with p-value both \sim 1e-16

The diverse chemical profiles of high-z galaxies

$$
z = 1.25
$$
\nmetal-poor
center
outskirtschaft
outskirtschafts

\n

The reason for GLASS-Zgrad1 showing inverted gradients

Wu et al. (2022)

• metal-poor gas inflows to the inner galaxy disks induced by the strong tidal torques of close gravitational interactions

Wang et al. (2022a)

motivation of having both NIRISS and NIRSpec spectra

- real data from HST WFC3 grisms (progID 13459, PI: Treu)
- slit size: 0.2 "x 0.46 ", red on bulge, blue on disk
- clear metallicity, dust and SFR gradient from bulge to disk

motivation of having both NIRISS and NIRSpec spectra

 $0.0₁$

 $\rm NII]H\alpha$ [NII

1.54

[SII][SII]

1.58

1.56

Observed wavelength $[\mu m]$

- WFSS cannot distinguish SF/AGN due to spec. reso
- slit spec suffers from slit loss, measurement bias, etc.

combined NIRCam mosaics of A2744

- combing the NIRCam data from multiple programs
- GLASS: **green**
	- $mAB \sim 29-29.4$
- UNCOVER: **blue**
	- mAB \sim 29.8
- Chen DDT: **red**
	- $mAB \sim 29$

Discovery of strongly inverted metal gradients at high *z*

analytical chemical evolution model of galaxy formation assuming insideout growth predicts initially steep negative gradients flatten over time

Discovery of strongly inverted metal gradients at high *z*

- analytical chemical evolution model of galaxy formation assuming insideout growth predicts initially steep negative gradients flatten over time
- cosmological hydrodynamic simulations instead predict that metallicities are initially well mixed by strong feedback and later locked into a negative slope

Discovery of strongly inverted metal gradients at high *z*

- analytical chemical evolution model of galaxy formation assuming insideout growth predicts initially steep negative gradients flatten over time
- cosmological hydrodynamic simulations instead predict that metallicities are initially well mixed by strong feedback and later locked into a negative slope
- we obtained the first measurements with sub-kpc spatial resolution of strongly inverted (i.e. positive) metal gradients in dwarf galaxies

1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts

$$
Z = Z_f \left[1 - \left(\frac{M_g}{M_i} \right)^{[f_i(1-z_i) - f_o(1-z_o)]/(\alpha - f_i + f_o)} \right]
$$

Erb (2008) chemical evolution model

gas inflows alone cannot explain

1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts

$$
Z_{\text{gas}} = \left[Z_0 + y\tau_{\text{eq}}\,\epsilon \left(1 - \exp\left(-\frac{t}{\tau_{\text{eq}}} \right) \right) \right]
$$

$$
\times \left[1 - \exp\left(\frac{-t/\tau_{\text{eq}}}{1 - \exp(-t/\tau_{\text{eq}})} \right) \right],
$$

$$
\tau_{\text{eq}} = \frac{1}{\epsilon (1 - R + \lambda)}.
$$

Peng & Maiolino (2014) chemical evolution model

- 1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts
- 2. centrally-directed cold-mode gas accretion driven by the massive dark matter halos underlying galaxy protoclusters

- 1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts
- 2. centrally-directed cold-mode gas accretion driven by the massive dark matter halos underlying galaxy protoclusters

- 1. metal-enriched gas outflows triggered by powerful galactic winds that transport metals from galaxy center to outskirts
- 2. centrally-directed cold-mode gas accretion driven by the massive dark matter halos underlying galaxy protoclusters
- 3. metal-poor gas inflows to the inner galaxy disks induced by the strong tidal torques of close gravitational interactions

