The depletion radius of dark matter halo

Jiaxin Han (韩家信) Shanghai Jiao Tong University

2023/06/16

The depletion radius: definition

- Growth of a halo $\leftarrow \rightarrow$ depletion of environment
 - Maximum infall rate location: inner depletion radius

Fong & Han 2021

The depletion radius: example

31.25 Mpc/h

The process of depletion

- Expanding universe—background density also receding
- Halo growth neighborhood extra depletion
- Relative density profile unveils depleted region

$$b(r) = \frac{\xi_{\rm hm}(r)}{\xi_{\rm mm}(r)} = \frac{\langle \delta(r) \rangle}{\xi_{\rm mm}(r)}$$

• Characteristic depletion radius: (relative) clustering is the weakest: region of influence

Gao, Han+, 2023

Depletion radius as a halo evolution probe

• Galactic halos form/deplete earlier

Depletion radius as a halo evolution probe

- Halo evolution undergoes fast & slow accretion phases (Zhao et al. 2003)
- The transition determines halo concentration

- The depletion rate provides a more objective diagnostic
 - Accelerated Depletion
 - Decelerated Depletion

Depletion radius evolution

• Well proportional to virial quantities across redshift

Why?

 $r_{\rm id} \simeq 2.0 \times r_{\rm vir}$.

 $\Delta(r_{\rm id}) \simeq 0.18 \Delta(r_{\rm vir}).$

The classical halo model is not self-consistent

Classical model: virialized halo

• Missing the non-virialized envelope

- Problems
 - Mass not counted: mass conservation violated
 - Space not covered: Incorrect intermediate scale clustering

Depletion radius as the exclusion radius

- Define halos according to depletion radius
- First principle model
 - Simple/natural model components
 - Single free parameter for unresolved halos
- Percent level accuracy across scales

Zhou & Han, 2023 (submitted)

Measuring the depletion radius in our MW

- Radial velocities of dwarf galaxies within 3Mpc of MW
 - Exclude satellites within 600kpc from M31
- Iterative Gaussian process
 - Velocity Dispersion
 - Average radial velocity
- MaxInfall detected at $\sim 2\sigma$ for our MW

$$v_{inf,max} = -46^{+24}_{-39} \text{kms}^{-1}$$

 $r_{id} = 559 \pm 107 \text{kpc}$
 $r_{ta} = 839 \pm 121 \text{kpc}$

Outermost edges of MW!

Landscape of our MW

Weak lensing measurement of the depletion radius

DECALS DR8 shear and group catalog Measure Projected Density Filed —Fit for 3D density/bias field

Fong, Han+, 2022., MNRAS

Summary

- Representation
 - Maximum infall location
 - Minimum bias location
- Meaning
 - Growth boundary
 - Depletion boundary
 - Clustering boundary
 - Exclusion boundary
- Basis for more physical and concise halo models

The extended halo model

Growing multi-layer dark matter condensation

Depletion radius v.s. Turnaround radius

- Low mass halos: depletion radius catch up with turnaround, growth have saturated
- Turnaround radius have also reached maximum (Tanoglidis et al. 2015), so that depletion radius can catch up

Depletion radius v.s. Splashback radius

• Much (~2-3 times) larger than conventional splashback radius

Measuring the depletion radius in our MW

with LG-analogos in Illustris

Li & Han 2021, ApJL arXiv: <u>2105.04978</u>

• detected at $\sim 2\sigma$ for our MW

 $r_{\rm id} = 559 \pm 107 \rm kpc$

- $r_{\rm ta} = 839 \pm 121 \rm kpc.$
- Slight inconsistency with virial radius measurement

Hints for unique growth history of the MW?

Connection to splashback

Wide spread in splashback radii of different particles

Ambiguity in defining the splashback radius

Splashback creates density caustics

- Steepest slope location as one representative
- Certain percentile in splashback population

Depletion: a highly complete percentile in splashback

The depletion radius: example

