

DES Y3 results: Measurement of BAO with projected three-dimensional clustering

- Kwan Chuen Chan (陈坤全) Sun-Yat Sen University
- In collaboration with Dark Energy Survey
 - SJTU, 19 Jun 2023

Dark Energy Survey Year 3

- Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile
- Dark Energy Camera, Field of view: 3 sq deg, 570-megapixels CCD
- •Y3 observing time from 2013 to 2015

Dark Energy Survey (DES) is an ongoing photometric survey,

•DES Y3 gold sample covers about 5000 sq deg •After masking, DES Y3 BAO sample covers about 4100 sq degree, with mean redshift of 0.83.

Sevilla-Noarbe +, 2011.03407

DES Y3

Baryonic Acoustic Oscillations (BAO)

- large-scale structure
- Standard ruler in the late universe
- Measured in numerous data analyses, mostly spec-z
- DES, lack of precise radial info, still preserve the transverse BAO. lacksquare

Acoustic oscillations during the early universe, imprinted in the distribution of the

Fiducial DES Y3 BAO analysis

- 7 million red galaxies z = 0.6 to 1.1, 5 tomographic bins
- 10 σ depth of 22, 22, 22.3, and 21 for griz

Redshift limits	z	W ₆₈
0.6 < z < 0.7	0.648 ± 0.003	0.0455 ± 0.003
0.7 < z < 0.8	0.742 ± 0.003	0.0522 ± 0.002
0.8 < z < 0.9	0.843 ± 0.003	0.0629 ± 0.003
0.9 < z < 1.0	0.932 ± 0.004	0.0633 ± 0.003
1.0 < z < 1.1	1.020 ± 0.006	0.0808 ± 0.006

Carnero Rosell +, 2107.05477

 σ_{68} is the width of the distribution $|z_{\rm photo} - z_{\rm spec}|/(1 + z_{\rm spec})$ and W_{68} is the width of the z_{spec} in the photo-z bin.

Angular clustering statistics

power spectrum C_{ℓ}

$$w(\theta, z_{\rm p}, z_{\rm p}') = \sum_{\ell} i^{\ell} \int dz \phi(z|z_{\rm p}) \int dz' \phi(z'|z_{\rm p}') \mathcal{L}_{\ell}(\hat{s} \cdot \hat{e}) \int \frac{dkk^2}{2\pi^2} j_{\ell}(ks) P_{\ell}(k, z, z')$$

$$P(k, \mu) = (b + \mu^2 f)^2 \left[(P_{\rm lin} - P_{\rm nw}) e^{-k^2 \Sigma_{\rm tot}^2} + P_{\rm nw} \right]$$

$$C_{\ell} = 2\pi \int_{-1}^{1} d(\cos \theta) w(\theta) \mathcal{L}_{\ell}(\cos \theta)$$

$$M(x) = BT_{\text{BAO},\alpha}(x') + A(x),$$

For $w, x = \theta, x' = \alpha \theta, T = w, A(\theta) = \sum_{i} \frac{a_i}{\theta^i}$ For $C_\ell, x = \ell, x' = \frac{\ell}{\alpha}, T = C_\ell, A(\ell) = \sum_{i} a_i \ell^i.$

The BAO is measured using angular correlation function w and angular

• BAO position in w or C_{ℓ} is extracted by fitting the full template to the data

Angular BAO measurement

w and C_{ℓ} results are consistent with each other \bullet

DES collaboration, 2107.05477

About 2 sigma deviation from the Planck results

DES Y3 BAO constraints

- $D_{\rm M}/r_{\rm d} = 18.92 \pm 0.51$, 2.5% measurement of the BAO at z= 0.83
- Most precise BAO measurement from photometric surveys
- $D_{\rm M}/r_{\rm d}$ is at 2.3 σ deviation from the Planck results, need more data and alternative analyses to corroborate

DES collaboration, 2107.05477

Three-dimensional correlation analysis

- Compute the 3D correlation function ξ akin to 3D analysis
- radial info
- Need to take care of the evolving dn/dz
- Radial direction is smeared, need projection

Ross +, 1705.05442

Compress info in the whole redshift range into a single data vector. Include some

3D correlation analysis for photometric data

• For $\sigma_7 \ge 0.02$, only effectively probes the transverse information, the transverse BAO is preserved

Ross +, 1705.05442

KCC +, 2110.13332

$\xi_{\rm p}$ template

- Obtained by mapping the general w template to $\xi_{\rm p}$

$$egin{aligned} w_{ij}(heta) &= \sum_{\ell=0,2,4} i^\ell \int dz \phi(z|z_\mathrm{p}) \ & imes \mathcal{L}_\ell(\hat{m{s}}\cdot\hat{m{e}}) \int rac{dkk^2}{2\pi^2} j_\ell(k) \end{aligned}$$

Loop over ijk that satisfy the bin conditions, ensure the lacksquareevolving dn/dz window is accounted for

$$\xi_{\rm p}(s,\mu) = \frac{\sum_{ijk} f_{ijk} w_{ij}(\theta_k)}{\sum_{ijk} f_{ijk}}$$

 $dz' \phi(z'|z_{
m p}')$

 $P_{\ell}(k,z,z'),$

KCC +, 2110.13332

$\xi_{\rm p}$ template

- Project $\xi_{p}(s,\mu)$ to the transverse direction

Photo-z uncertainties, the radial info, especially the radial BAO is erased

KCC +, 2110.13332

 $\xi_{\rm p}(s_{\perp}) = \frac{\sum_{i} \xi_{\rm p}(s, \mu_{i}) W(\mu_{i})}{\sum_{i} W(\mu_{i})}$

Tophat: equal weighting, sub-optimal Gaussian: suppress the pairs with low signal to noise

Theory vs mock measurement

- ICE-COLA mocks, data include realistic photo-z uncertainties
- The theory template is in good agreement with the mock measurement

Testing the stacking window on mocks

 Gaussian window behaves more stably as the width of the window decreases b/c it gives more weight to the pairs with high S/N

Top-hat

More stable mean and error bar estimates, more consistent χ^2/dof , Gaussian window is preferred

Gaussian

• Mapping the general w covariance to $\xi_{\rm p}$ one

$$= \frac{\sum_{i} \sum_{j} W(\mu_{i}) W(\mu_{j}) \text{Cov}(\xi_{p}(s, \mu_{i}), \xi_{p}(s', \mu_{j}))}{\sum_{i} W(\mu_{i}) \sum_{j} W(\mu_{i})}$$

$$\operatorname{Cov}[\hat{w}_{ij}(\theta), \hat{w}_{mn}(\theta')] = \sum_{\ell} \frac{(2\ell+1)}{(4\pi)^2 f_{\mathrm{sky}}} \bar{\mathcal{L}}_{\ell}(\cos\theta) \bar{\mathcal{L}}_{\ell}(\cos\theta') \\ \left[\left(C_{\ell}^{im} + \frac{\delta_{\mathrm{K}}^{im}}{\bar{n}_i} \right) \left(C_{\ell}^{jn} + \frac{\delta_{\mathrm{K}}^{jn}}{\bar{n}_j} \right) + \left(C_{\ell}^{in} + \frac{\delta_{\mathrm{K}}^{in}}{\bar{n}_i} \right) \left(C_{\ell}^{jm} + \frac{\delta_{\mathrm{K}}^{jm}}{\bar{n}_j} \right) \right] \right]$$

Finite bin width correction Mask correction

 $\xi_{\rm p}$ covariance

$$\Big) \Big(C_{\ell}^{jm} + \frac{\delta_{\mathrm{K}}^{jm}}{\bar{n}_{j}} \Big) \Big]$$

Correlation btw $\xi_{\rm p}$ and angular statistics

- The correlation btw $\xi_{\rm p}$ and angula more independent statistic

- The correlation btw $\xi_{
m p}$ and angular statistics (w or C_{ℓ}) is low, serves as a

over a footprint of 4108 deg^2

BAO sample

• BAO sample, 7.03 million red galaxies in the redshift range of [0.6,1.1]

True-z distribution

 Photo-z derived from DNF, true re VIPERS spec-z sample

Photo-z derived from DNF, true redshift distribution estimated with the

BAO measurements

- ξ_p constraint on α : 0.953 ± 0.029 (Gaussian) and 0.945 ± 0.033 (Top-hat)
- Consistent with $w: 0.937 \pm 0.025$
- Deviation from Planck is reduced to 1.6 σ

Planck fiducial cosmology, $\alpha=1$

$$\alpha = \frac{\frac{D_{\rm M}}{r_{\rm d}}|_{\rm data}}{\frac{D_{\rm M}}{r_{\rm d}}|_{\rm fid}}$$

- Individual tomographic bins, $\xi_{\rm p}$ gives comparable or even tighter constraint than w
- The BAO signals are heterogeneous across redshift, deviation from Planck mainly driven by the last bin

Individual bin fit results

Error bars in heterogeneous mocks

 In heterogeneous mocks, the pro than w is enhanced

- In heterogeneous mocks, the probability of getting $\xi_{ m p}$ with error bar larger

Measurements in homogeneous sample

- The combo 2-4 bins contains consistent BAO signals, the resultant constraint from 0.977 ± 0.026 (Gaussian) and 0.975 ± 0.033 (Top-hat) vs 0.978 ± 0.027 (*w*)
- $\xi_{\rm p}$ combines the signals at the level of data vector, while w effectively combines likelihood
- Caveat: combining likelihood always shrinks the error bar

Robustness tests

- projection (2) it combines signals at the level of data vector

Case	$oldsymbol{\xi}_{\mathrm{p}}$: W_{G}	$\xi_{ m p}$: $W_{ m TH}$	w
Default	$0.953 \pm 0.029 \; (21.5/29)$	$0.945 \pm 0.033 \ (33.4/29)$	$0.937 \pm 0.025 \; (95.2/89)$
No sys. corr.	$0.942 \pm 0.029 \; (39.7/29)$	$ *0.938 \pm 0.033 (46.4/29) $	$0.935 \pm 0.026 \ (94.6/89)$
sys - PCA50	$0.945 \pm 0.029~(22.8/29)$	$0.943 \pm 0.028 \ (36.0/29)$	$0.937 \pm 0.025 \ (94.9/89)$
$n(z)$ Z_MC	$0.948 \pm 0.029 \ (21.6/29)$	$ *0.943 \pm 0.034 (33.6/29) $	$0.935 \pm 0.025 \ (95.6/89)$
MICE template	$0.989 \pm 0.038 \ (53.5/29)$	$ *0.988 \pm 0.032 (78.5/29) $	$0.980 \pm 0.026 \ (95.1/89)$
MICE cov.	$0.956 \pm 0.021 \ (23.7/29)$	$ *0.955 \pm 0.025 (41.0/29) $	$0.936 \pm 0.021 \; (125.8/89)$
MICE cosmology	$0.996 \pm 0.026 \; (59.3/29)$	$0.995 \pm 0.021 \ (90.7/29)$	$0.977 \pm 0.022 \; (125.8/89)$
Unmodified cov.	$0.956 \pm 0.030 \; (21.3/29)$	$0.953 \pm 0.035 \ (32.7/29)$	
$[70, 130]{ m Mpc}h^{-1}$	$0.955 \pm 0.030 \; (11.7/16)$	$0.965 \pm 0.031 (17.1/16)$	
$\Delta r = 5 \mathrm{Mpc} h^{-1}$	$0.953 \pm 0.030 \; (19.1/15)$	$0.953 \pm 0.036 \ (16.2/15)$	
$\Delta r = 2{ m Mpc}h^{-1}$	$0.949 \pm 0.028 \ (38.1/44)$	$0.941 \pm 0.031 (44.5/45)$	
No bin 1	$0.976 \pm 0.024 \ (29.5/29)$	$*0.960 \pm 0.030 (38.7/29)$	$0.948 \pm 0.026 \ (67.8/71)$
No bin 2	$0.928 \pm 0.034 \ (19.0/29)$	$*0.931 \pm 0.034 (32.4/29)$	$0.929 \pm 0.026 \ (80.7/71)$
No bin 3	$0.938 \pm 0.034 \ (27.0/29)$	$*0.941 \pm 0.038 (38.7/29)$	$0.935 \pm 0.028 \ (78.4/71)$
No bin 4	$0.928 \pm 0.033 \ (24.7/29)$	$*0.943 \pm 0.034$ (38.8/29)	$0.925 \pm 0.028 \ (70.0/71)$
No bin 5	$0.950 \pm 0.030 \; (21.5/29)$	$*0.959 \pm 0.029$ (40.6/29)	$0.967 \pm 0.026 \; (82.3/71)$

• ξ_p is generally more sensitive to photo-z noise than w b/c (1) it measures correlation after

• Gaussian window is more stable than top-hat as it puts more weight to the transverse pairs

Angular vs Projected 3D

	Angular analysis Projection and then clustering measurement	Projected 3D Clustering measurement and then projection
Pros	Angle only, cosmology-independent	Effective to condense the data Include some radial info
Cons	Explicit bin division, loss of radial info	Need cosmology for distance computation More sensitive to noise

Both statistics offer important crosschecks on each other.

Y6 BAO analysis

- Same footprint, but deeper magnitude
- $\xi_{\rm p}$, along with angular statistics, is adopted for fiducial Y6 BAO analysis

Conclusions

- of 4180 deg^2 .
- function is considered
- for the combo 2-4 bins, the constraint from ξ_p is indeed stronger
- The deviation from Planck is reduced from 2.5 sigma to 1.6 sigma.
- fiducial statistics in Y6 BAO analysis

 Using DES Y3 data, we apply the 3D correlation function to measure the BAO on a red galaxy sample with 7 million galaxies in the redshift range of [0.6,1.1] over a field

Modeling includes general photo-z distribution and more robust Gaussian window

• We find $D_{\rm M}/r_{\rm d} = 19.15 \pm 0.58$ (Gaussian) and $D_{\rm M}/r_{\rm d} = 19.00 \pm 0.67$ (Top-hat). The constraint is weaker than w b/c the sample is heterogeneous in BAO signals and

• ξ_p is complementary to the angular statistics, serve as useful crosscheck, one of the