SIRIUS: A new semi-numerical method for simulating cosmic reionization and IGM heating

Meng Zhou

supervisor: Prof. Yi Mao Department of Astronomy, Tsinghua University

June 23, 2023 Suzhou

Department of Astronomy, Tsinghua University

We hope we can observe images of reionization in the near future.

Brainstorm!

- As fewest approximations as possible
- Flexible to any kind of source model
- Fast

- Reduce the number of quantities to be updated per time step;
- Include overlapping effect in RT;
- Apply another method for temperature evolution.

We use **Shell** window functions to print/extract profiles.

- Similar to "Top-hat"
- FFT convolution

Volume-normalized

We use **Shell** window functions to extract/print profiles.

De-Correlation Matrix

R₁

-0.5

-1.0

-0.5 L_____ -1.5 R_2

0.5

We use **Shell** window functions to print/extract profiles.

Approximations of Radiative Transfer

	UV	X-ray
Method	1D Radiative Transfer (Thomas et al 2008, Ghara et al 2015, Krause et al 2018…)	Linear Perturbation Theory of Reionization (Zhang et al 2007, Mao et al 2015)
Used in	Photoionization	Photoionization, Heating, Lyα background
Assumptions	Spherically symmetric propagation;	Spatial average and linear perturbation; Attenuated by mean optical depth;
Modification	Include overlapping in radiative transfer; Shell-Wise instead of full bubbles.	Remove other approximations on source models.

Both methods do not have any assumptions on source models!

Single Source Test: Roughly consistent with strong source.

Cosmological density field test:

Zhou and Mao in prep

Source Models

- Model 1
 - Density Field: 21cmFAST (Mesinger et al 2011)
 - Halo : Press-Schechter HMF

 $\epsilon_i \sim \gamma_i(\nu) f_{coll}(\eta, M_{min}, R, \delta_R) n_{\rm H}(\eta, \mathbf{x}, R)$

Model 2

- Density Field: FASTPM (Feng et al 2016)
- Halo : FoF + Press-Schechter HMF

 $\epsilon_{resol} \sim \gamma_i(\nu) M_{halo}$ $\epsilon_{unresol} \sim \gamma_i(\nu) f_{coll}(\eta, M_{min}, R, \delta_R) n_{\rm H}(\eta, \mathbf{x}, R)$

$$\gamma(\nu) = \zeta C_s (\nu/\nu_0)^{(1+s)}$$

Source Model Comparisons

21cm Power Spectrum @ half ionized

Reionization History

Heating History

Summary and future work

- We introduce SIRIUS, a new semi-numerical method for simulating cosmic reionization and IGM heating.
- Its uses shell window functions and approximations of radiative transfer.
- We perform single source test and cosmological density tests and obtain reasonable results.
- SIRIUS is flexible to any source model as long as you provide emissivity and density fields.