# Estimation of photo-z probability density functions via deep learning with statistical basis

Presenter: Qiufan Lin (林秋帆)



#### Photo-z estimation as a computer vision problem supervised by spec-z

State-of-the-art, best accuracy Direct PDF prediction lacks statistical basis, and may suffer from biases The network lacks interpretability



## One form of bias: mean redshift residuals as a function of spec-z or photo-z



#### **Bias correction via splitting representation and estimation** (Lin et al. 2022)

 Representation Learning (all data)
 Estimation (a near-balanced subset)

 Input
 Encoder
 Latent Vector

 (Representation)
 Estimator
 Output

• Treat spectroscopic & photometric spaces separately:



## Current work: empower deep learning with statistical basis

• Representation learning + statistical inference (or *k*NN)



## **Determine the optimal** *k* via local Probability **Integral Transform (PIT) diagnostics**



• For each labeled galaxy:

$$\operatorname{PIT}(z_{spec}) = \int_0^{z_{spec}} p(z) dz$$



• For each query (unlabeled) galaxy:



• k is optimal when the PIT<sub>k</sub> distribution is closest to a **uniform** distribution

## **Recalibration + Refitting**

- Discretized —> Recalibration
- Non-uniform —> Refitting



## **Results: PITs**

• Good PDF calibration achieved by sampling/inference (shown for the SDSS data)



PIT

## **Results: point estimates**

• Mean redshift bias correction achieved by sampling/inference (similar to Lin et al.)

 $z_{photo} = \int_{0}^{z_{max}} z \times p(z) dz$ 

• No loss in accuracy (contrary to Lin et al.)



## **Results: the impact of distribution mismatch**

• Robustness under distribution mismatch with correct sampling prior



## **Summary**

- Key idea: combine deep learning and statistical basis
- Representation learning, statistical inference, recalibration & refitting
- Better results over benchmark methods:
  - Well-calibrated PDFs
  - Good control of photo-z-dependent residuals without compromising accuracy
  - Robustness under distribution mismatch

## For interpretability: analyze *redshift-variable* correlations

- Information/variables to be exploited for reducing redshift residuals (e.g., galaxy structures, environmental properties, etc.)
- Relations between variables



## **Back-up slides**

#### **Representation learning**





#### **Optimal metric for PIT diagnostics:** Wasserstein distance

$$D_{Wasserstein}[P_{\text{PIT}_k}, P_{uniform}] = \int_0^1 |F_{\text{PIT}_k}(p) - F_{uniform}(p)| dp$$
$$D_{CrossEntropy}[P_{\text{PIT}_k}, P_{uniform}] = \int_0^1 [P_{uniform}(p)\log P_{\text{PIT}_k}(p)]$$

$$P_{uniform}] = \int_{0}^{1} |F_{\text{PIT}_{k}}(p) - F_{uniform}(p)| dp$$

$$P_{uniform}] = \int_{0}^{1} [P_{uniform}(p)\log P_{\text{PIT}_{k}}(p) + (1 - P_{uniform}(p))\log(1 - P_{\text{PIT}_{k}}(p))] dp$$

$$P_{uniform}[P_{uniform}(p)] = \int_{0}^{1} [P_{uniform}(p)\log P_{\text{PIT}_{k}}(p)] dp$$

0.10

0.08

mber



**D**<sub>Wasserstein</sub>

**D**<sub>CrossEntropy</sub>

*k*<sub>optimal</sub>







