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Photo-z estimation as a computer vision problem supervised by spec-z
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State-of-the-art, best accuracy

Direct PDF prediction lacks statistical basis, and may suffer from biases

The network lacks interpretability



One form of bias: 

mean redshift residuals as a function of spec-z or photo-z

SDSS z < 0.4

(Pasquet et al. 2019)
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(biased)
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(not guaranteed 
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Δz =
zphoto − zspec

1 + zspec



Bias correction via splitting representation and estimation

(Lin et al. 2022)
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Representation Learning (all data) Estimation (a near-balanced subset)

Pasquet et al. 2019

Corrected w.r.t spec-z

Corrected w.r.t photo-z


Pasquet et al. 2019

Corrected w.r.t spec-z

Corrected w.r.t photo-z


• Treat spectroscopic & photometric spaces separately:



Input
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Current work: empower deep learning with statistical basis

Photo-z PDF
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• Representation learning + statistical inference (or kNN)



PIT(zspec) = ∫
zspec

0
p(z)dz• Select k from [5, 10, 15, … , 2000]


• For each labeled galaxy:
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k is optimal or not?

• k is optimal when the  distribution is closest to a uniform distributionPITk

Determine the optimal k via local Probability 
Integral Transform (PIT) diagnostics

• For each query (unlabeled) galaxy:



Recalibration + Refitting

Input

Encoder Latent Vector Estimator  Output

p′￼(z) ∝ p(z) × dPIT[F(z)]
zz

Recalibration

Fixed

Refitting

(May be discretized)

(Directly using the test data)

• Discretized      —>    Recalibration

• Non-uniform   —>    Refitting
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Results: PITs
• Good PDF calibration achieved by sampling/inference (shown for the SDSS data)



zphoto = ∫
zmax

0
z × p(z)dz

Results: point estimates
• Mean redshift bias correction achieved by sampling/inference 

(similar to Lin et al.)

• No loss in accuracy (contrary to Lin et al.)



Results: the impact of distribution mismatch 
• Robustness under distribution mismatch with correct sampling prior



Summary

- Key idea: combine deep learning and statistical basis


- Representation learning, statistical inference, 
recalibration & refitting


- Better results over benchmark methods:

• Well-calibrated PDFs


• Good control of photo-z-dependent residuals without 
compromising accuracy


• Robustness under distribution mismatch



For interpretability: analyze redshift-variable correlations

• Information/variables to be exploited for reducing redshift residuals 
(e.g., galaxy structures, environmental properties, etc.)


• Relations between variables



Back-up slides
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Input Image

Space A Space B

Network

CNN

Flatten + Fully-connected layer

Fully-connected layers Concatenation

CNN with bilinear interpolation

Output Image

E (B - V)

redshift

From Pasquet et al. 
or Treyer et al.

Space A: 16 nodes

Space B: 512 nodes

16+512 nodes

Reshape

8 convolutional layers

3 interpolation layers

2 layers

L1: 1024 nodes

L2: = redshift-bin number



DWasserstein
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DCrossEntropy

OptimalDiscretized Tilted

DWasserstein[PPITk
, Puniform] = ∫

1

0
|FPITk

(p) − Funiform(p) |dp

DCrossEntropy[PPITk
, Puniform] = ∫

1

0
[Puniform(p)log PPITk

(p)

+(1 − Puniform(p))log(1 − PPITk
(p))]dp

Optimal metric for PIT diagnostics:

Wasserstein distance



Star-forming 
Other 
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Photometry-basedImage-based
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