Differentiable Cosmological Simulation with Adjoint Method

Yin Li (Peng Cheng Laboratory)

with Yucheng Zhang (PCL/NYU), Libin Lu (Flatiron), Chirag Modi (Flatiron), Drew Jamieson (MPA), Yu Feng (Google), Francois Lanusse (CEA Saclay), and Leslie Greengard (Flatiron/NYU) 2211.09815, 2211.09958

Suzhou Bay 2023-06-22

Credit: Każe Wong (Flatiron)

Thanks to the Deep Learning Revolution

Hardware

Software

Differentiability: what & why

- Specifically, the gradient of the objective/posterior to the input parameters
 - cosmological + ICs + astrophysical + foregrounds + systematics
 - forward model at field level, great for joint SBI/LFI of multiple probes while avoiding summary statistics and covariances
- Optimization
 - Backpropagation (automatic differentiation, a special case of the Adjoint Method)
- Inference
 - Sampling (MCMC): Hamiltonian Monte Carlo & Langevin Monte Carlo
 - Variational Inference (VI): inference by optimization
 - NN+Sampling, NN+VI (Modi, YL, & Blei 2023)
- Future applications
 - Can be combined with other differentiable models: semi-analytic, empirical, NNs
 - Baseline for new physics (PNG and dark matter) and galaxy formation

Cosmological Forward Model

Forward to Model

(a) model structure

(b) integration-observation loop

Forward to Model

IC

 \downarrow I_i

In

(a) model structure

(c) i-th (leapfrog) integration-observation step

Backward for Inference or Optimization

(c) i-th (leapfrog) integration-observation step

Existing differentiable cosmological simulation codes

- BORG (Jasche & Wandelt 2013)
- ELUCID (Wang et al. 2014, ...)
- FastPM+vmad
- BORG-PM
- FlowPM

. . .

(Wang et al. 2014, ...) (Feng et al. 2016 & Seljak et al. 2017, ...) (Jasche & Lavaux 2019, ...) (Modi et al. 2020)

Existing differentiable cosmological simulation codes

- (Jasche & Wandelt 2013) BORG
- (Wang et al. 2014, ...) ELUCID
- FastPM+vmad
- BORG-PM
- FlowPM

. . .

(Feng et al. 2016 & Seljak et al. 2017, ...) (Jasche & Lavaux 2019, ...) (Modi et al. 2020)

Trade-off between spatial and time complexity

Existing differentiable cosmological simulation codes

- BORG
- ELUCID
- FastPM+vmad
- BORG-PM
- FlowPM

. . .

```
(Jasche & Wandelt 2013)
(Wang et al. 2014, ...)
(Feng et al. 2016 & Seljak et al. 2017, ...)
(Jasche & Lavaux 2019, ...)
(Modi et al. 2020)
```

Trade-off between spatial and time complexity Adjoint method: optimization under constraint Lev Pontryagin 1956, also cf. Neural ODE

Adjoint method 1950s

Automatic differentiation 1960s~1970s

Backprop popularized for training NNs 1980s

Deep learning revolution 2010s

Algorithm Summary: Forward

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{F}_k(\boldsymbol{x}_k, \boldsymbol{\theta}), \qquad k = 0, \cdots, n-1,$$

Algorithm Summary: Backward

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + oldsymbol{F}_k(oldsymbol{x}_k,oldsymbol{ heta}), \qquad k = 0, \cdots, n-1,$$
 $oldsymbol{\lambda}_{k-1} = oldsymbol{\lambda}_k + oldsymbol{\lambda}_k \cdot rac{\partial oldsymbol{F}_{k-1}}{\partial oldsymbol{x}_{k-1}}, \qquad oldsymbol{\lambda}_n = -rac{\partial \mathcal{J}}{\partial oldsymbol{x}_n},$
 $rac{\mathrm{d}\mathcal{J}}{\mathrm{d}oldsymbol{ heta}} = rac{\mathrm{d}\mathcal{L}}{\mathrm{d}oldsymbol{ heta}} = rac{\partial \mathcal{J}}{\partial oldsymbol{ heta}} - oldsymbol{\lambda}_0 \cdot rac{\partial oldsymbol{x}_0}{\partial oldsymbol{ heta}} - \sum_{k=1}^n oldsymbol{\lambda}_k \cdot rac{\partial oldsymbol{F}_{k-1}}{\partial oldsymbol{ heta}}.$

pmwd: Differentiable Particle-Mesh Library

- A new code based on JAX
 - ✓ fast sim on GPU
 - ✓ 2x memory & 3~4x runtime with derivatives
 - ✓ open sourced at <u>github.com/eelregit/pmwd</u>

20s to run this:

512³ particles

 1024^3 mesh

63 time steps

1 A100 80GB SXM4

50

20

10

5

2

.5

.2

Performance

Alternative to Established Workflows in Cosmology

- Data compression into summary statistics:
 - Power spectra or 2-point correlation functions
 - Polyspectra or N-point correlation functions
 - Histograms/PDFs, skewness, kurtosis, ...
 - Abundances of halos, galaxies, ...

Risk of information loss

- Modeling and Inference
 - Perturbation theories (EFTs), Emulators calibrated with simulations
 - MCMC assuming Gaussian likelihood

Difficulties on nonlinearity, cross-correlation, cross-covariance, Gaussianity of likelihood

A Toy Optimization Problem

(a) initial conditions at a = 1/64

(b) final snapshot at a = 1

(c) reverse evolution back to a = 1/64

(d) optimization for 10 iterations at a = 1

(e) optimization for 100 iterations at a = 1

(f) optimization for 1000 iterations at a = 1

Spatial optimization (SO) to match Gadget-4 under high accuracy settings

Applications

- Fast mocks
 - Covariance for established workflows with summary statistics
 - Simulation-based inference (Likelihood free inference, implicit inference)
- Field-level inference (explicit inference) for cosmology
 - marginalizing over initial conditions, astrophysics, etc.
- Inferring initial conditions
 - fixing/marginalizing over cosmology, astrophysics, etc.
 - explicit inference
 - implicit inference?

Summary

- Efficient differentiation in cosmological simulations, only O(1)x increase in space & time complexities
- pmwd: fast differentiable particle-mesh simulation code on GPUs
- Many future development and potential applications

Future development and applications

- Works in progress/planning:
 - short-range PP force
 - distributed parallelization on GPUs: 2 ways, sCOLA & direct
 - various cosmological probes: weak lensing, galaxies, Lya skewers, intensity mapping, etc.
 - inference algorithms in high-dimensional space
- Differentiable simulations as base for cosmo. & astrophys. models
 - differentiable dark matter-observable connection à la biasing/HOD/SAM/etc.
 - differentiable foregrounds and systematics
 - from parameterized models to neural networks
- New physics
 - Add massive neutrinos
 - Baseline for inflation models, dark matters, etc
- Galaxy formation simulations?

Accuracy of the Gradients: Comparison with Automatic Differentiation

Reversibility

precision	cell/ptcl	ptcl mass $[10^{10}M_{\odot}]$	time steps	disp rel diff	vel rel diff
single	8	1	63	5.2×10^{-2}	7.1×10^{-2}
single	8	1	126	2.1×10^{-2}	3.6×10^{-2}
single	8	8	63	3.3×10^{-3}	7.6×10^{-3}
single	8	8	126	3.7×10^{-3}	7.0×10^{-3}
single	1	1	63	1.4×10^{-3}	2.2×10^{-3}
single	1	1	126	1.3×10^{-3}	1.7×10^{-3}
single	1	8	63	$4.3 imes 10^{-4}$	$7.3 imes 10^{-4}$
single	1	8	126	$4.4 imes 10^{-4}$	6.3×10^{-4}
double	8	1	63	5.4×10^{-11}	1.3×10^{-10}
double	8	1	126	3.5×10^{-11}	7.0×10^{-11}
double	8	8	63	5.8×10^{-12}	1.4×10^{-11}
double	8	8	126	6.4×10^{-12}	1.2×10^{-11}
double	1	1	63	2.2×10^{-12}	3.4×10^{-12}
double	1	1	126	2.1×10^{-12}	2.9×10^{-12}
double	1	8	63	7.2×10^{-13}	1.2×10^{-12}
double	1	8	126	6.9×10^{-13}	9.4×10^{-13}