

Galaxy Structure Evolution in protoclusters at z=2-3

Shuang Liu 刘爽 Purple Mountain Observatory, CAS

Collaboration Workshop on Cosmology and Galaxy Formation 2023.06.20@Shanghai

Collaborators: Xianzhong Zheng(PMO), Dongdong Shi(PMO), Zheng Cai(THU), Xiaohui Fan(UA), Xin Wang(UACS), Qirong Yuan (NNU), Haiguang Xu(SJTU), Run Wen(PMO) et al.

Part I: What boost galaxy merger rates in two massive protoclusters at z=2.24 (2023, mnras, 523, 2422)

Part II: Galaxy Structure evolution in protoclusters at z=2-3

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **523**, 2422–2439 (2023)

https://doi.org/10.1093/mnras/stad1543

Advance Access publication 2023 May 22

What boost galaxy mergers in two massive galaxy protoclusters at z = 2.24?

Shuang Liu[®],^{1,2} Xian Zhong Zheng[®],^{1,2}* Dong Dong Shi,¹ Zheng Cai,³ Xiaohui Fan,⁴ Xin Wang,^{5,6,7} Qirong Yuan,⁸ Haiguang Xu,⁹ Zhizheng Pan,¹ Wenhao Liu,¹ Jianbo Qin[®],¹ Yuheng Zhang[®],^{1,2,10,11} and Run Wen^{1,2}

¹ Purple Mountain Observatory, Chinese Academy of Sciences, 10 Yuanhua Road, Nanjing, Jiangsu 210023, China
 ² School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
 ³ Department of Astronomy, Tsinghua University, Beijing 100084, China
 ⁴ Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
 ⁵ School of Astronomy and Space Science, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
 ⁶ National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
 ⁷ Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China
 ⁸ Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

⁹School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

¹⁰Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain

¹¹Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain

♦ Introduction

Galaxy morphology evolution in general field and mature clusters

Less study on galaxy morphology in (proto)clusters at z=2-3

Introduction

Controversial results in high-z overdense environment

How different dynamical states of protocluters (overdensity factor, velocity dispersion) affect the galaxy size (gas accretion, disk instability) and galaxy merger rate?

Sample and Observations

> Two massive protoclusters at z=2.24

BOSS1244: two substructures with velocity dispersions of 304 km/s and 430 km/s.

Sample and Observations

> Two massive protoclusters at z=2.24

BOSS1542: a giant filament structure with velocity dispersion of 255 km/s.

Sample and Observations

HST observation in two massive protoclusters

- HST WFC3 F160W
 Observation for BOSS1244
 and BOSS1542 (GO-15266, PI: Z. Cai)
- GALAPAGOS (SExtractor+Galfit) performs 2D Sersic model fitting.
- Sample: 85/86 HAEs with HST observation in BOSS1244/1542

Pair Fraction and Merger Rate

Pair Fraction and Merger Rate

- Regular: isolated galaxies;
- Merger: disturbed morphologies;
- Close Pair: multi-objects within 5
 < R < 30 kpc (3.64"), H-band flux ration < 1/4;

Cutout image: 6 arcsec X 6 arcsec (49.4 kpc at z=2.24)

Pair Fraction and Merger Rate

Field	Sample	N _{tot}	N _{pair}	Nmerger	f_{pair} (%)	$f_{\text{pair,corr}}$ (%)	f_{merger} (%)
BOSS1244	z _{spec}	18	10	4	56±12	27±10	22±10
	all	61	31	16	51±6	22±5	26±6
BOSS1542	z _{spec}	13	12	4	92±8	63±13	31±13
	all	61	38	19	62±6	33±6	39±6
CANDELS	all	455	55			12±2	

- Control Sample: SFGs with stellar mass $\log \left(\frac{M_*}{M_{\odot}}\right) > 10.3$, Ks<23.2 mag in 2.1<z<2.4 in CANDELS field.
- MCMC simulation: Randomly pick up 244/233 SFGs corresponding to the distribution of Ks, spec-z, and stellar mass for HAEs, and reconstruct the density map of BOSS1244/BOSS1542, leading to ~30% contamination from fore/background galaxies.

Pair Fraction and Merger Rate

Pair Fraction and Merger Rate

The merger rates and pair fraction in BOSS1244 (BOSS1542) is 1.8 (2.8) times that of the general fields with merger rate at the same epoch.

Mass-Size Relation

- The majority of HAEs follow the trend of the field massive SFGs, but with larger scatter for re and n → wild structure evolution.
 - Nine (six) extremely massive (logM/Msun>11) compact galaxies in BOSS1244/1542. Diskdominated in BOSS1244, and bulge-dominated in BOSS1542.

Mass-Size Relation

- The median re (n) of the HAEs in BOSS1244/1542 are 2.80/2.97 kpc (1.55/2.97), smaller (larger) than re=3.27 kpc (n=1.13) in general field.
- Two-dimensional KS-test (KS2D2S) for re and n: p-value of 0.024 (0.055) for BOSS1244 (BOSS1542) and field SFGs.

BOSS1244 versus BOSS1542

Groups within protoclusters

RGB color: Blue: F125W (PI: X. Wang); Green: F125W+F160W; Red: F160W.

Group-scale overdensities are inclined to locate in BOSS1542, less seen in BOSS1244 →Both global and environments play important role in raising galaxy merger rates.

Protoclusters at z=2-3

> 3D-DASH: The Widest Near-Infrared Hubble Space Telescope Survey

Protoclusters at z=2-3

COSMOS2.2 + COSMOS2.5

➢ PKS1138 protocluster at z=2.16

➤ SSA22 at z=3.09

Thank You!

- The merger rate in BOSS1244 and BOSS1542 is 1.8 (2.8) times higher than that of the general fields at the same epoch.
- ➢ Protocluster HAEs exhibits broader range of re and n than field SFGs + About 15 per cent of the HAEs are massive compact population → high galaxy density and cold dynamical state are key factors to drive galaxy mergers.
- The galaxy structure difference between BOSS1244 and BOSS1542 shows that both the local environment (on group scales) and the global environment play essential roles in shaping galaxy morphologies in protoclusters.