

Constructing the connection between dark matter halos and emission line galaxies (ELGs)

Yipeng Jing School of Phys and Astro Department of Astronomy

DESI--Dark Energy Spectroscopic Instrument

Nearly 40,000 spectra per night!!

San Matalia Roo's talk!

DESI 光谱观测样本

Summary: A new baseline

SV3 LRG	0.3 - 1.0	a,r,z,W1	600	565	500	7.0 M
SV3 ELG	0.6 - 1.6	g,r,z	1950	1420	910	12.7 M
SV3 QSO (tracers)	< 2.1	g,r,z,W1,W2	210	210	140	$1.96 {\rm M}$
SV3 QSO (Ly- α)	> 2.1	$g,\!r,\!z,\!W1,\!W2$	100	295	60	$0.84~{\rm M}$
Total in dark time			2860	2490	1619	$22.5 \mathrm{M}$
SV3 BGS	0.05 - 0.4	r (Gaia G)	860	688	678	9.5 M
SV3 BGS–Faint	0.05 - 0.4	r (Gaia G)	540	324	317	$4.4 \mathrm{M}$
SV3 MWS	0.0	$g,r (\text{Gaia } \mu)$	800 +	720	720	$10.1 {\rm M}$
Total in bright time			2200+	1732	1715	$24.0 \mathrm{\ M}$

观测样本巨大: 3000万+ 河外天体 但是 LRG、ELG、QSO都是选择性很强的样本 它们与暗物质分布之间的关系?

Emission line galaxies (ELGs) vs host DM halos

- ELGs are the main target of DESI,
 PFS,Euclid,Roman
- They have strong Oll
 lines that can be
 detected with a
 resolution 3000-5000
- The relation important for cosmology and galaxy formation

 An optical spectrum of a typical Emission Line Galaxy (ELG)

VIMOS Public Extragalactic Redshift Survey(VIPERS)at VLTs

21h30m

Subsamples used

- 4 samples divided by stellar mass (normal galaxies)
- 4 samples divided by Oll luminosity (ELGs)

Hongyu Gao (*高鸿宇)*,YPJ, Yun Zheng, Kun Xu, ApJ (2022)

Normal galaxies

Main conclusion: The stellar mass-(sub)halo mass relation (SHMR) of normal galaxies is valid for ELGs, once the satellite fraction is properly reduced

Using SV3 fields

Gao, H, YPJ, et al. 2023, arXiv:2306.06317

Measuring Physical Properties

- BC03 Stellar Population Synthesis (SPS) library (Bruzual & Charlot 2003)
- Chabrier (2003) IMF
- Metallicities Z /Z_sun= 0.4, 1 or 2.5
- SFH -Delayed $\psi(t) = 1 M_{\odot} \tau^{-2} t \exp(-t/\tau)$
- [®] With 32 τ =0.01 to 12.6 Gyr with Δlog τ =0.1
- Extinction Law: Calzetti Law
- EBV range: 0.0-0.50
- Using Le Phare code to fit the photometric data with the templates

Number distribution vs stellar mass M*

 Table 1. Details of four LRG subsamples.

Name	Redshift Range	$\log M_{*} \left[M_{\odot} ight]$	$N_{ m g}$
LRG0	$0.8 < z \le 1.0$	[11.1, 11.3]	13906
LRG1	$0.8 < z \leq 1.0$	[11.3, 11.5]	4834
LRG2	$0.8 < z \leq 1.0$	[11.5, 11.7]	957
LRG3	$0.8 < z \leq 1.0$	[11.7, 11.9]	124

 Table 2. Details of four ELG subsamples.

Name	Redshift Range	$\log M_{*} \left[M_{\odot} ight]$	$N_{ m g}$
ELG0	$0.8 < z \leq 1.0$	[8.5, 9.0]	9481
ELG1	$0.8 < z \leq 1.0$	$\left[9.0, 9.5\right]$	29764
ELG2	$0.8 < z \leq 1.0$	$\left[9.5, 10.0\right]$	34155
ELG3	$0.8 < z \leq 1.0$	$\left[10.0, 10.5\right]$	6583

Empirical approach: Galaxies in halos

Have determined galaxies in halos using

- 1. Halo Occupation Distribution (Jing et al. 1998;Zheng et al. 2005)
- 2. Conditional Luminosity Function (Yang X.H. et al. 2003; 2006)
- 3、 Group catalogs (Yang et al. 2004,2007,2008-2009)
- 4、 Abundance Matching Method (L. Wang et al. 2006; Wecshler et al. 2006)
- 5、 reconstruction simulation (H.Y. Wang et al. 2016)

- ELGs subject to complicated target selections (color and mag.cuts)
- Incomplete and changes rapidly with redshift
- Although HOD are being attempted by people in the collaboration, I believe Abundance Matching better suits for the complicated TS

Abundance Matching

- Solution Simulation CosmicGrowth (Jing 2019) to model the observed $w_{xy}(r_p)$
- Halos and subhalos identified with HBT(Han et al 2012)
- Solution Set in the set of th
 - Double Power law (DP):
 - five parameters

$$M_{*} = \left[\frac{2k}{(M_{acc}/M_{0})^{-\alpha} + (M_{acc}/M_{0})^{-\beta}}\right]$$

The same clustering and density

- Step1: Following Gao et al 2022, we assume that central ELGs follows the same SMHR as the whole population, but the satellites are reduced to the fraction 0 < P_{sat} < 1 in a halo of mass M_{acc} (the same clustering)
- Step2: assuming we get the number density $n_{can}(M_{\star}) \text{ from Step 1, we normalize the density to}$ $the observed one n_{obs}(M_{\star}) \text{ by randomly selecting}$ with the probability $F^{ELG} \equiv \frac{n_{obs}(M_{\star})}{n_{can}(M_{\star})}$ (the same density)

Modeling auto CFs with $P_{sat} = const$

Auto CFs reproduced with $P_{sat} = 0.89^{+0.07}_{-0.11}$ But cross CF between LRG and ELGs too high

Modeling without ELG auto CFs with $P_{sat} = const$

But auto CFs of ELGs too low in model

Fitting results

Modeling all CFs with $P_{sat}(M_{acc})$

7 parameters are well constrained

Monopole moments in redshift space

Quadrupole moments in redshift space

Hexadecapole moment in redshift space

Valid for higher redshift

Galactic Conformity

Gao, Hongyu, YPJ et al. under DESI internal review

Best value

K_{conf}

Project CF

Monopoles (redshift space)

Quadropoles

Hexadecapoles

Evolution of whole ELGs

Complicated HODs at different redshift

ELG mock (赤道附件1度)

Conclusions

- With just 7 parameters that are well determined by the observations, we are able to model the relation between ELGs and dark matter halos in DESI SV3;
- We find that galactic conformity is a must for explaining the strong clustering of ELGs
- With our framework, it is easy to include the galactic conformity with only 1 additional parameter;
- With much larger 1 Year sample, we are able to improve accuracy of the model, by introducing dependances on OII luminosity, redshift etc