

Simulation the observation of hot gas and cold gas in ISM and CGM

fujian@shao.ac.cn

2023-06-23,苏州

Collaborators: 钟文心、刘磊、王左磊

IGM

Diffuse gas

CG Moling gas

ISM 15 kpc SM

CGM

Outflow

IGM

HI gas in ISM: 21cm

Hot gas in CGM and ICM

- T>10⁶K, X-ray emission, fully ionized gas
- Missing baryon problem

SKA1-mid

- SKA-mid :350 MHz-15.4 GHz
- HI gas in low redshift galaxies~1.42GHz ~0.5" resolution

Synthetic observation for signals of single dish

Simulations softwares for radio interferometer arrays

- OSKAR
- RASCIL
- CASA
- 0 0 0
- SKA1-mid/FASTA等未来 设备要考虑类似VLBI模 式的观测

- 仿真程序局限:
- 只能模拟较短基线
- 共视
- 振子天线/碟形天线
- GPU

OmniUV: Omnipotent UV

- Station trajectory calculation
- UVW calculation
- Visibility simulation
- Image/beam reconstruction

Omni*UV*

Simulated

OmniUV

- Available on GitHub
- Codes, documents, examples
- Smearing effect
- FIT-IDI output
- DRO/Halo orbit support
- Aperture array beam pattern
- https://github.com/liulei/omniuv

THE ASTRONOMICAL JOURNAL, 164:67 (9pp), 2022 August © 2022. The Author(s). Published by the American Astronomical Society. OPEN ACCESS https://doi.org/10.3847/1538-3881/ac77f0

OmniUV: A Multipurpose Simulation Toolkit for VLBI Observation

Lei Liu^{1,2,3}, Weimin Zheng^{1,2,3}, Jian Fu⁴, and Zhijun Xu¹ ¹Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, People's Republic of China; liulei@shao.ac.cn ²National Basic Science Data Center, Beijing 100190, People's Republic of China ³Shanghai Key Laboratory of Space Navigation and Positioning Techniques, Shanghai 200030, People's Republic of China ⁴Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Rd., Shanghai, 200030, People's Republic of China *Received 2021 December 17; revised 2022 June 7; accepted 2022 June 9; published 2022 July 25*]

HI gas components in simulated galaxies

• L-Galaxies 2020 SAMs HI to H_2 prescription by Fu et al. 2013

 10^{-4}

80.0

• Illustris-TNG

HI and H₂ postprocessing catalogues by Diemer et al. 2018 in TNG100 box

模拟仿真步骤

SKA-1 mid configurations

196 dishes:

133 15m SKA dishes + 64 13.5m MeerKAT dishes

HI flux and image

$$\frac{S_{\rm HI}}{\rm Jy} = \frac{M_{\rm HI,2d}}{2.35 \times 10^5 M_{\odot}} \left(\frac{D}{\rm kpc}\right)^{-2}$$

• 1D HI profile \rightarrow 2D mesh image

HI surface density

Flux of an HI disk

• 40'×40' grid with 0.5" angular resolution

Simulations for SKA1-mid array

1. Simulation 1: M_{HI} >10⁸ M_{\odot} Full box

2. Simulation 2: $M_{\rm HI}$ >10⁶ M_{\odot} One area with most abundant low mass galaxies

参数	仿真1	仿真2
观测时长/h	6	6
单次扫描时长/min	1	360
扫描次数	10	1
接收机带宽/GHz	1.36-1.42	
角分辨率	0.5"	
Dec	-30.7°	

输入

examples

仿真2

成图

模拟热气体的X波段观测

- Hot Universe Baryon Surveyor (HUBS)
 - soft X-ray band telescope (for hot CGM/IGM)
 - launched time: ~ 2030.
 - Main science target: missing baryons in hot gaseous halo

Key parameters	
Energy range	0.1-2 keV
Field of View	$1^{\circ} \times 1^{\circ}$
Agular resolution	1'
Number of pixels	60×60
Effective area	500 cm ²
Spectral resolution	2 ev (main array) 0.6 ev (central)

SAMs model for radial density profiles of hot ionized gas in CGM /IGM

Zhong, Fu, Sharma et al. MNRAS, 2023

Zhong, Fu, Shen, Yuan, RAA, 2023

光谱构建

- 使用软件: SOXS (APEC模块构建等离子体光谱)
 - 输入量
 - $I_X = \frac{L_X}{4\pi d_c}$: 每个晕的 X 射线热光度 (bolometric luminosity) 流量
 - Z_{gas}: 平均金属丰度
 - *T_X*: X 射线光度加权平均温度
 - 输出
 - 带有金属发射线的光谱

HUBS观测模拟

不同能段模拟图像

z=0.014, M₂₀₀=5×10¹²M_☉ 视场: 1°×1°

曝光时间: 10⁶s (stacking)

HUBS观测模拟

Summary

- OmniUV can be used to simulated the interferometer signals for dish arrays with long base lines.
- We simulate the observation of 21cm interferometer signal for SKA1-mid for HI gas, which helps for future observation of HI in nearby universe.
- By taking the advantage of the large simulation box and flexibility in SAMs, our mock X-ray observations provides the opportunity to make target selection and observation strategies for forthcoming X-ray facilities.
- The survey of hot baryons in resolved clusters by HUBS is effective at z<0.5. HUBS has the ability to detect the emission lines of hot gas in clusters at z>0.5, and future observations of point-like sources will help us understand the hot baryons in the early universe.

Thank you!