

Model for WDM Subhalo Distribution

Feihong He

Power Spectrum of WDM

The matter power spectrum of WDM will be suppressed at small scale compared with CDM case.

Simulation and Spurious Halos

10¹³

10¹⁶

 10^{15}

1014

 $M_{h}(h^{-1}M_{\odot})$

1.0 0.5 0.0

10¹²

Warm Dark Matter

Model Framework

The spatial distribution of the subhalo should trace the halo density profile.

"anti-bias": subhalo final number density is less centrally concentrated

Model Framework

Unevolved spatial distribution

The number density profile of accreted subhalos traces the halo density profile.

$$ilde{n}_{
m sub}(R|m_{
m acc}) \sim { ilde{
ho}}_{
m DM}(R)$$
 .

Unevolved spatial distribution

Halo density profile

The subhalo mass function of WDM is suppressed at the scale below $M_{\rm hm}$ in

$$rac{n_X(M)}{n_{ ext{CDM}}(M)}\simeq \left(1+\left(arac{M_{ ext{hm}}}{M}
ight)^b
ight)^c \quad ext{Stucker et al. 2021}$$

unevolved mass function
$$a=2.3$$
 evolved mass function $b=1$

c = -0.68

Tidal Stripping

The ratio between the final mass and infall mass of a given subhalo is approximately proportional to the halocentric radius, and the scatter follows the lognormal distribution Survival fraction depends on subhalo mass, more WDM subhaloes below $M_{\rm hm}$ are disrupted.

Mass Stripping In WDM

Stronger tidal stripping on WDM subhaloes

Vulnerable to the tidal effects

Halo Concentration

Later formation time of WDM halos leads to lower concentration.

Bose et al. 2016

$$rac{c_{200}^{
m WDM}}{c_{200}^{
m CDM}} = \left(1+\gamma_1rac{M_{
m hm}}{M_{200}}
ight)^{-\gamma_2} imes(1+z)^{eta(z)}$$

MCMC Realization

$m_{\chi}/{ m keV}$	$M_{ m hm}/h^{-1}M_{\odot}$	μ_*	eta	σ
CDM	~	0.48	1.12	0.99
3.0	2.3×10^{8}	0.46	1.2	1.01
1.2	5.4×10^{9}	0.42	1.3	1.1
0.5	1.1×10^{11}	0.29	1.45	1.25
	data,CDM data,3.0keV data,1.2keV data,0.5keV – model,CDM – model,3.0keV	dN(m, R)	$f^{m_{max}}$	$[m_{m}]^{-\alpha}$

$$egin{aligned} rac{\mathrm{d}N(m,R)}{\mathrm{d}\ln m \ \mathrm{d}^3 R} \sim & ilde{
ho}(R) \int_{m_{\mathrm{min}}}^{m_{\mathrm{max}}} f_s(m_{\mathrm{acc}}) iggl[rac{m_{\mathrm{acc}}}{m_0}iggr]^{-lpha} iggl(1 + iggl(\kappa rac{M_{\mathrm{hm}}}{m_{\mathrm{acc}}}iggr)^\etaiggr)^\gamma \ & imes \expiggl[-rac{1}{2}iggl(rac{\ln \mu - \ln ar{\mu}(R)}{\sigma}iggr)^2iggr] \mathrm{d}\ln m_{\mathrm{acc}} \end{aligned}$$

Model Predictions

Summary

- In contrast to the power-law form in CDM, the unevolved subhalo mass function for WDM is suppressed at the low mass end due to the cut-off in the power spectrum.
- WDM subhaloes are more vulnerable to tidal stripping and disruption due to their lower concentrations at accretion time.
- These differences result in a mass-dependent spatial distribution of WDM subhaloes which also depends on the WDM particle mass.