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NGC1052-DF2 (DF2)

• Ultra diffuse galaxy (UDG) in the 
group of NGC1052
Discovered by Karachentsev et al. (2000)

• Mstar = 2e8Msun

• Galaxy formation and evolution 
models expect Mhalo ~ 5e10Msun
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NGC1052-DF2 (DF2)
• van Dokkum et al. (2018) inferred the dynamical 

mass of DF2
• 10 globular clusters = kinetic tracers

• Inferred dynamical mass = 3.4e8Msun within 
R=7.6kpc

• Stellar mass ~ 2e8Msun
• Dark matter (DM) mass ~ 1e8Msun
• cf. Theoretical models expect ~ 5e10Msun 

DF2 is a DM deficient galaxy
+ DMDGs in the same galaxy group and in the 

Virgo cluster, even in the field?
(e.g. van Dokkum+19, Guo+20, Toloba+23)
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Notable properties of DM deficient gals

1. Extremely small DM mass
2. Diffuse stellar component

Q. Such extreme galaxies can be 
formed within the standard 
framework of galaxy formation?
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18.6kpc

van Dokkum et al. (2018)

Central column density  ~ 5 Msun/pc^2



Tidal interaction as a formation scenario

 Violent tidal massloss
→ Extremely small DM mass?

 Tidal puffing-up
→ Diffuse stellar component?
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GO (2018)



Simulation setup

NGC1052 = time-varying NFW potential
 Mass growth (Correa et al. 2015)
 c(M,z) relation (Ludlow et al. 2016)
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 Orbit consistent with 
LCDM

 Accretion at z= 1.5

Satellite = 2-component N-body system

Normal dwarf galaxy 
at infall



DM deficiency
• Mass evolution at r=2.7kpc

 Half-mass radius (Danieli et al. 2019)

• Massloss at each pericentric passage

• DM mass is reduced more significantly

• Transforming a normal satellite into a 
DM deficient galaxy 

7GO, van den Bosch & Burkert (2022)

Cored model



Gal. properties

• “Observe” the satellite 
galaxy model from 100 
different orientation angles
Line: median
Err bar: 15-85 percentile

• Re and σstar stay const in 
the absence of tide
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Gal. properties

• Galaxy size increases at 
each pericentric passage
Energy injection through 

tidal shock

• Observations (pink) 
reasonably reproduced
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Gal. properties
• Stellar vel dispersion increases 

at each pericentric passage
Energy injection

 
• Decreases in a short time 

Re-virialization
Galactic potential shallowed by 

tidal stripping

• Observations (pink) reasonably 
reproduced
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Gal. properties

• Impacts less significant in 
cuspy counterpart

 More resilient to tidal force
 Adiabatic shielding

 e.g. Spitzer (1987)
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Globular clusters in DF2

• 10 globular clusters (GCs)
• Each has ~1e6Msun
• Orbital decay due to dynamical 

friction

• Extended distribution
• Rgc = 3.1kpc
• cf. Re = 2.2kpc
• Can the tidal scenario explain 

it?

18.6kpc
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In the absence of tides 
(orange),
 GC orbit gradually decays due 

to dynamical friction
 σgc decreases too

GC orbital evolution

GO, van den Bosch & Burkert (2022)



Considering tides (blue),
• Rgc behaves like Re

Rapid increase at each pericenter
Compete with orbital decay due to 

dynamical friction

• σgc behaves like σstar

• Observations reproduced (pink) 
assuming the cored model

GC orbital evolution

GO, van den Bosch & Burkert (2022)



Trail of diffuse galaxies? 
van Dokkum et al. (2022a)



Galaxy collision formation scenario

van Dokkum et al. (2022a)

1. Collision of two gas-rich dwarf gals 
2. Stars form in the compressed gas
3. DM and pre-existing stars pass 
through it

→ Origin of DM deficient gals?



Galaxy collision formation scenario

Site of galaxy formation ~

van Dokkum et al. (2022a)

 GCs can be stripped from the formed DMDGs
 Distribution was more extended (dyn friction)



Semi-analytic modeling of GC orbits

 Global potential of DF2 + Dynamical friction

 “Final” condition of GCs
     -Observations → X, Y, Vz and M 
     -Drawing → Z, Vx and Vy
          (Sersic profile + Gaussian distribution; Dutta Chowdhury et al. 2019)

 Trace back the orbital evolution from t=0 to t=-8Gyr



What was the GC distribution at formation?

 GCs are expected to form at 
collision (t~-8Gyr)

 Maximum radius of GCs in two 
time-windows 

 rmax = 5-10kpc
 cf. observed Rgc = 3.1kpc 

GO, van den Bosch, Burkert & Kang (2022)

Distance from DMDG center



How many GCs were stripped?

 Combine the rmax distribution 
and analytic model of tidal radius
 e.g., at R < 120kpc, more than 80% of 

GCs will be stripped

 N of GCs = Challenge
 Difficult to make tens of massive GCs 

(Lee et al. 2021)

GO, van den Bosch, Burkert & Kang (2022)

Distance from host center



Summary 

• Discovery of dark matter deficient galaxies

• Tidal massloss scenario reproduces observations of DF2
 Extremely low DM mass
 Distribution and velocity dispersion of stars and GCs

• N of GCs to form is a challenge for the galaxy collision scenario
   - GC distribution was more extended than observed
    → Making them susceptible to the tidal force  
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谢谢!
Questions?



Appendix



Galaxies live in dark matter halos
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Dark Matter Galaxies APOSTLE simulations
(Sawala et al. 2015)



NGC1052-DF2 (DF2)
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Shen et al. (2021)

• Ultra diffuse galaxy (UDG) in the 
group of NGC1052
Discovered by Karachentsev et al. (2000)

• Mstar = 2e8Msun



NGC1052-DF2 (DF2)

• Ultra diffuse galaxy (UDG) in the 
group of NGC1052
Discovered by Karachentsev et al. (2000)

• Mstar = 2e8Msun

• Galaxy formation and evolution 
models expect Mhalo ~ 5e10Msun
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Behroozi et al. (2013)



NGC1052-DF2 (DF2)

• van Dokkum et al. (2018) inferred the 
dynamical mass of DF2

• 10 globular clusters = kinetic tracers
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Active debate on DF2

Q. Low confidence due to small N of kinetic tracers? 
     -Martin et al. (2018); Laporte et al. (2018)

A. Dynamical mass inference with diffuse stellar lights and 
planetary nebulae agree with van Dokkum+
     -Danieli et al. (2019); Emsellem et al. (2019)



Active debate on DF2

Q. Bias due to data processing schemes?
     -Hayashi & Inoue (2018)

A. More sophisticated Jeans analysis agrees with van Dokkum+
     -Wasserman et al. (2019)



Active debate on DF2

Q. Shorter distance to DF2 (13Mpc) -> DF2 is a normal galaxy?
     -Trujillo et al. (2019)

     -cf. van Dokkum+ supposed 20Mpc

A. D = 22Mpc based on deeper observation data, making DF2 
more abnormal
     -Shen et al. (2021)



NGC1052-DF4
• Second DM deficient galaxy
• Resembles to DF2

 Stellar mass
 DM mass
 Size
 Globular clusters
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van Dokkum et al. (2019)



Tidal force
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Host halo/galaxy 

Subhalo/satellite galaxy

: gravity on the COM

: gravity at given points



        minus         = Tidal force 
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Time evolution

Subhalo/satellite galaxy 
• is deformed
• is dynamically heated up
• loses its mass (tidal stripping)



GO et al. (2019)

fb = M/Mi
1st peri. passage

2nd 

Subhalo mass 
is reduced by 

tidal force
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Tidal interaction of DF2 vs NGC1052

• Halo outskirt is sensitive to 
tidal force

• A large fraction of DM mass is 
in the halo outskirt

↓
Small DM mass?

GO et al. (2019)
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Tidal interaction of DF2 vs NGC1052

• Stars are in the halo center
• More resilient to tidal force

• Shallowing the galaxy potential
• Injection of kinetic energy by 

impulsive tidal shock

Puffing-up of stellar component
↓

Diffuse stellar component?

GO et al. (2019)
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Tidally deformed DF2 Keim et al. (2022)
See also Montes et al. (2020)



Simulation setup

NGC1052 = time-varying NFW potential
 Mass growth (Correa et al. 2015)
 c(M,z) relation (Ludlow et al. 2016)
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xc=1.0, η=0.3
zacc = 1.5

Jiang et al. (2015)
See also Li et al. (2021)



Satellite = N-body • Stars -> Deprojected Sersic profile 
(Prugniel & Simien 1997)

 Re=1.25kpc (van der Wel et al. 2014) 
 n=1
 M=2e8Msun

• DM halo -> Transformed NFW profile
 (Read et al. 2016)

 M=6e10Msun
 c=6.6
 core or cusp

 Numerical params
 N = 15Mio -> mp = 4e3Msun
 Softening = 14pc
 Results numerically converged
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Orbit and mass evolution

• Satellite orbit shrinks due to
 Growth of the host
 Self-friction 

• Massloss at each pericentric passage
DM mass is reduced by a factor of ~70
Reduction of the stellar mass is 30%
Stronger impacts in the cored model 

40GO, van den Bosch & Burkert (2022)



Dynamical friction

• Deceleration force due to the density wake

Density wake

Chandrasekhar (1943)



Orbital decay due to dynamical friction

• Nusser (2018)
• Mdyn ~ 1e8Msun, single GC -> sinking within a few Gyr 
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GC-GC scattering as 
dynamical buoyancy
• Dutta Chowdhury et al. (2019)

• Mdyn ~ 1e8Msun, multiple GCs
Multi GC run

Single GC runs

Core stalling radius
(e.g. Read et al. 2006; 
Inoue 2011)
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Need other buoyancy forces

Even if dynamical buoyancy 
of GC-GC scattering is 
considered, GC orbits 
gradually decays

Dutta Chowdhury et al. (2019)

44



Tidal interaction as another buoyancy?

• Shallowing the galaxy 
potential (tidal stripping)

• Injection of kinetic energy 
by impulsive tidal shock

Expansion of GC orbits
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Orbital decay due to dynamical friction



Simulation setup

• Mass of 10 star particles around r=2.5kpc 
is increased to 1e6Msun

• e.g. Forbes et al. (2017); Hudson & Robison (2018)
• Distribution consistent with obs within ~100Myr
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Simulation setup
NGC1052 = fixed potential 
• NFW halo (α=1, β=3)

 M=1.1e13Msun
 ch=5.8 (van Gorkom et al. 1986) 

Satellite = N-body
• Stars -> Hernqust (1990; α=1, β=4)

 M=2e8Msun
 Re=0.93kpc (Lange et al. 2015) 

• DM halo
 M=4.9e10Msun
 α=0.1 (Di Cintio et al. 2014) or 1.0 (NFW), 

β=3
• Penarrubia et al. (2010); Errani et al. (2015) 

 cs=11.2 (Ludlow et al. 2016)

Initial density structure
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Simulation setup

xc=0.6, η=0.1

van den Bosch, GO, Hahn & Burkert (2018)
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Pericenter = 0.003Rv,h ~ 1kpc
1 percentile (Wetzel 2011)

Initially at apocenter 



Simulation setup
Subhalo = N-body system
 Number of particles, N

• Stars -> N=409,600
 M=2e8Msun

• DM halo -> N=100,352,000 
 M=4.9e10Msun

    -> mass resolution = 510Msun

 Softening parameter, ε=0.03kpc
• Results would be reliable at t=10Gyr

 Power et al. (2003); van den Bosch & GO (2018)
 Tree code for GPU clusters (GO et al. 2013)
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Distribution of 
stripped matter

• Result from the run of the 
cored model
 Similar distribution in the run of 

the cuspy model 

• DM significantly stripped

• Bulk of stars is settled at the tip of 
the line (center of the satellite) 
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GO (2018)



Mass evolution
• DM mass reduced 

significantly in α=0.1 (cored) 
model

• By a factor of ~1000 at 10Gyr

• Less significant reduction in 
α=1.0 (cuspy) model

• Stellar mass does not change 
significantly in both models

GO (2018)
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Comparison with van Dokkum et al. (vD)

Upper mass limits (vD)

GO (2018) 52



Comparison with van Dokkum et al. (vD)

Upper mass limits (vD)

GO (2018) 53

・α=0.1 (cored DM profile)
・tightly bound and radial orbit
・Reff is reproduced too



Caveat on the Ogiya (2018) model

• Galaxy structure and merger orbital parameters are assumed 
to follow observations and empirical relations at z = 0

• DF2 is a satellite galaxy and must have been accreted earlier

• Accreted higher z -> Smaller orbits
• Stronger tidal force, larger number of pericentric passage
   -> More significant tidal massloss
• Even satellites with a NFW halo might reproduce the observation
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DASH library (GO et al. 2019)

• Idealized N-body simulations of minor halo mergers
• Both halos follow the NFW density profile initially

• Large mass ratio -> Dynamical friction is negligible, orbit is ‘frozen’
                               -> Host halo = analytical potential

• Scale free nature of gravity -> scalable to any small mass subhalos

• Fulfill numerical criteria (van den Bosch & GO 2018)

• 2 orbital parameters + 2 halo concentrations
• >2000 simulations
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Mass evolution

• Tr: radial period

• More significant mass loss 
• On more radial and tightly 

bound orbits
• With less (more) concentrated 

sub- (host) halos
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More tightly 
boundMore radial

Stronger 
tidal force

More 
loosely 
bound

GO et al. (2019)



Machine Learning model

• Trained a machine learning 
(ML) model describing the mass 
evolution

• Accurate at the 0.1 dex level

57

GO et al. (2019)



ML prediction

• Bound mass evolution in 
the cuspy model 

• Color lines = prediction by 
the ML model

• The mass criteria can be 
satisfied if DF2 accreted 
early enough (z > 1.5)

GO, Taylor & Hudson (2021)
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How rare is DF2?

• Test if the bound mass 
below the critical value

• >10000 models

• PDF of orbital params 
(Jiang et al. 2015)

59



How rare is DF2?

• DF2 is possible but very 
rare

• Considering orbit 
contraction due to the 
smooth mass growth of 
the host, prob. increased

GO, Taylor & Hudson (2021)
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• Some GCs can escape from the 
satellite galaxy
10GCs in the simulation

• Including more GCs in the 
simulation, observed N of GCs 
may be explained
12 or more GCs expected 

• - Burkert & Forbes (2019)

GC orbital evolution

GO, van den Bosch & Burkert (2022)



GCs in the mini-bullet cluster scenario
Pros
  Extremely high pressure environment in the galaxy collision
   → Formation of multiple GCs at the collision
     (Silk 2019; Lee et al. 2021)
   → Explain homogeneous properties of GCs? 
     (Fensch et al. 2019; van Dokkum et al. 2022b)

Caveats
GCs should have felt dynamical friction
→ Distribution of GCs was more extended than observed 
→ Such GCs were susceptible to the tidal force 

Tidal puffing-up does not help as only one encounter is expected



How susceptible are GCs to the tidal force?

 Comparison of the mean 
densities of DF2 and NGC1052

     (indicator of tidal susceptibility)
 

 e.g. GCs at r=5kpc will be 
stripped from DF2 if the 
formation place was R~120kpc 

α’ = 2

α’ = 1.5

GO, van den Bosch, Burkert & Kang (2022)

vs



How many GCs are stripped?

 Cumulative distribution of satellite 
galaxies

     -Han et al. (2016)

 Weighting fstrip with the satellite 
number, 33-59 GCs should have 
been formed originally
 Difficult to form such a large number of 

massive GCs (Lee at al. 2021) 
 N of GCs = Challenge for the scenario

GO, van den Bosch, Burkert & Kang (2022)
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