

On the formation process of dark matter deficient galaxies

Go Ogiya (ZJU)

with Frank van den Bosch (Yale); Andi Burkert (Munich); Xi Kang (ZJU)

NGC1052-DF2 (DF2)

Ultra diffuse galaxy (UDG) in the group of NGC1052

✓ Discovered by Karachentsev et al. (2000)

- Mstar = 2e8Msun
- Galaxy formation and evolution models expect Mhalo ~ 5e10Msun

Shen et al. (2021)

NGC1052-DF2 (DF2)

- van Dokkum et al. (2018) inferred the dynamical mass of DF2
 - 10 globular clusters = kinetic tracers
- Inferred dynamical mass = 3.4e8Msun within R=7.6kpc
 - Stellar mass ~ 2e8Msun
 - Dark matter (DM) mass ~ 1e8Msun
 - cf. Theoretical models expect ~ 5e10Msun

DF2 is a DM deficient galaxy

+ DMDGs in the same galaxy group and in the Virgo cluster, even in the field?

(e.g. van Dokkum+19, Guo+20, Toloba+23)

Notable properties of DM deficient gals

- 1. Extremely small DM mass
- 2. Diffuse stellar component

Q. Such extreme galaxies can be formed within the standard framework of galaxy formation?

Tidal interaction as a formation scenario

- Violent tidal massloss
- → Extremely small DM mass?
- Tidal puffing-up
- → Diffuse stellar component?

NGC1052 = time-varying NFW potential

- ✓ Mass growth (Correa et al. 2015)
- ✓ c(M,z) relation (Ludlow et al. 2016)

Satellite = 2-component N-body system

DM deficiency

- Mass evolution at r=2.7kpc
 - Half-mass radius (Danieli et al. 2019)
- Massloss at each pericentric passage
- DM mass is reduced more significantly
- Transforming a normal satellite into a DM deficient galaxy

GO, van den Bosch & Burkert (2022)

- "Observe" the satellite galaxy model from 100 different orientation angles
 - ✓Line: median
 - ✓Err bar: 15-85 percentile
- Re and σ star stay const in the absence of tide

- Galaxy size increases at each pericentric passage
 ✓Energy injection through tidal shock
- Observations (pink) reasonably reproduced

GO, van den Bosch & Burkert (2022)

- Stellar vel dispersion increases at each pericentric passage
 ✓Energy injection
- Decreases in a short time
 ✓Re-virialization
 - ✓Galactic potential shallowed by tidal stripping
- Observations (pink) reasonably reproduced

GO, van den Bosch & Burkert (2022)

- Impacts less significant in cuspy counterpart
 - More resilient to tidal force
 - Adiabatic shielding
 - e.g. Spitzer (1987)

Globular clusters in DF2

- 10 globular clusters (GCs)
 - Each has ~1e6Msun
 - Orbital decay due to dynamical friction
- Extended distribution
 - Rgc = 3.1kpc
 - cf. Re = 2.2kpc
 - Can the tidal scenario explain it?

GC orbital evolution

In the absence of tides (orange),

- GC orbit gradually decays due to dynamical friction
- σ gc decreases too

GC orbital evolution

Considering tides (blue),

- Rgc behaves like Re
 - ✓ Rapid increase at each pericenter
 - ✓ Compete with orbital decay due to dynamical friction
- σgc behaves like σstar
- Observations reproduced (pink) assuming the cored model

Trail of diffuse galaxies?

van Dokkum et al. (2022a)

Galaxy collision formation scenario

 \rightarrow Origin of DM deficient gals?

Semi-analytic modeling of GC orbits

- Global potential of DF2 + Dynamical friction
- "Final" condition of GCs
 - -Observations \rightarrow X, Y, Vz and M
 - -Drawing \rightarrow Z, Vx and Vy

(Sersic profile + Gaussian distribution; Dutta Chowdhury et al. 2019)

• Trace back the orbital evolution from t=0 to t=-8Gyr

What was the GC distribution at formation?

- GCs are expected to form at collision (t~-8Gyr)
- Maximum radius of GCs in two time-windows
- rmax = 5-10 kpc
- cf. observed Rgc = 3.1kpc

How many GCs were stripped?

- Combine the rmax distribution and analytic model of tidal radius
 - e.g., at R < 120kpc, more than 80% of GCs will be stripped
- N of GCs = Challenge
 - Difficult to make tens of massive GCs (Lee et al. 2021)

Summary

- Discovery of dark matter deficient galaxies
- Tidal massloss scenario reproduces observations of DF2
 - Extremely low DM mass
 - Distribution and velocity dispersion of stars and GCs
- N of GCs to form is a challenge for the galaxy collision scenario
 - GC distribution was more extended than observed
 - \rightarrow Making them susceptible to the tidal force

谢谢! Questions?

Galaxies live in dark matter halos

NGC1052-DF2 (DF2)

Ultra diffuse galaxy (UDG) in the group of NGC1052

✓ Discovered by Karachentsev et al. (2000)

• Mstar = 2e8Msun

NGC1052-DF2 (DF2)

- Ultra diffuse galaxy (UDG) in the group of NGC1052
 ✓ Discovered by Karachentsev et al. (2000)
- Mstar = 2e8Msun
- Galaxy formation and evolution models expect Mhalo ~ 5e10Msun

Behroozi et al. (2013)

Active debate on DF2

Q. Low confidence due to small N of kinetic tracers? -Martin et al. (2018); Laporte et al. (2018)

A. Dynamical mass inference with diffuse stellar lights and planetary nebulae agree with van Dokkum+

-Danieli et al. (2019); Emsellem et al. (2019)

Active debate on DF2

Q. Bias due to data processing schemes?

-Hayashi & Inoue (2018)

A. More sophisticated Jeans analysis agrees with van Dokkum+ -Wasserman et al. (2019)

Active debate on DF2

Q. Shorter distance to DF2 (13Mpc) -> DF2 is a normal galaxy?

-Trujillo et al. (2019)

-cf. van Dokkum+ supposed 20Mpc

A. D = 22Mpc based on deeper observation data, making DF2 more abnormal

-Shen et al. (2021)

NGC1052-DF4

- Second DM deficient galaxy
- Resembles to DF2
 - Stellar mass
 - DM mass
 - Size
 - Globular clusters

van Dokkum et al. (2019)

Tidal force

- : gravity on the COM
- : gravity at given points

\implies minus \implies = Tidal force \implies

- is dynamically heated up
- loses its mass (tidal stripping)

Tidal interaction of DF2 vs NGC1052

Tidal interaction of DF2 vs NGC1052

- Stars are in the halo center
- More resilient to tidal force
- Shallowing the galaxy potential
- Injection of kinetic energy by impulsive tidal shock

Puffing-up of stellar component ↓ Diffuse stellar component?

Tidally deformed DF2

Keim et al. (2022) See also Montes et al. (2020)

Jiang et al. (2015) See also Li et al. (2021)

Simulation setup

NGC1052 = time-varying NFW potential

- ✓ Mass growth (Correa et al. 2015)
- ✓ c(M,z) relation (Ludlow et al. 2016)

Satellite = *N*-body

- Stars -> Deprojected Sersic profile (Prugniel & Simien 1997)
 - ✓ Re=1.25kpc (van der Wel et al. 2014)
 - ✓ n=1
 - ✓ M=2e8Msun
- DM halo -> Transformed NFW profile
- (Read et al. 2016)
 - ✓ M=6e10Msun
 - ✓ c=6.6
 - ✓ core or cusp
- Numerical params
 - ✓ N = 15Mio -> mp = 4e3Msun
 - ✓ Softening = 14pc
 - ✓ Results numerically converged

Orbit and mass evolution

- Satellite orbit shrinks due to
 ✓ Growth of the host
 ✓ Self-friction
- Massloss at each pericentric passage
 ✓DM mass is reduced by a factor of ~70
 ✓Reduction of the stellar mass is 30%
 ✓Stronger impacts in the cored model

GO, van den Bosch & Burkert (2022)

Dynamical friction

• Deceleration force due to the density wake

Orbital decay due to dynamical friction

- Nusser (2018)
 - Mdyn ~ 1e8Msun, single GC -> sinking within a few Gyr

GC-GC scattering as dynamical buoyancy

- Dutta Chowdhury et al. (2019)
 - Mdyn ~ 1e8Msun, multiple GCs

Need other buoyancy forces

Even if dynamical buoyancy of GC-GC scattering is considered, GC orbits gradually decays

Tidal interaction as another buoyancy?

- Shallowing the galaxy potential (tidal stripping)
- Injection of kinetic energy by impulsive tidal shock

Expansion of GC orbits

Orbital decay due to dynamical friction

- Mass of 10 star particles around r=2.5kpc is increased to 1e6Msun
 - e.g. Forbes et al. (2017); Hudson & Robison (2018)
 - Distribution consistent with obs within ${\sim}100 \text{Myr}$

NGC1052 = fixed potential

- NFW halo ($\alpha = 1, \beta = 3$)
 - ✓ M=1.1e13Msun
 - ✓ ch=5.8 (van Gorkom et al. 1986)

$$\rho(r) = \frac{\rho_0}{(r/r_0)^{\alpha} [1 + (r/r_0)]^{\beta - \alpha}}$$
$$c \equiv R_v/r_0$$

Satellite = *N*-body

- Stars -> Hernqust (1990; $\alpha = 1$, $\beta = 4$)
 - ✓ M=2e8Msun
 - ✓ Re=0.93kpc (Lange et al. 2015)
- DM halo
 - ✓ M=4.9e10Msun
 - ✓ $\alpha = 0.1$ (Di Cintio et al. 2014) or 1.0 (NFW),

 $\beta = 3$

- Penarrubia et al. (2010); Errani et al. (2015)
- ✓ cs=11.2 (Ludlow et al. 2016)

van den Bosch, GO, Hahn & Burkert (2018)

Subhalo = *N*-body system

- ➤ Number of particles, N
 - Stars -> N=409,600
 ✓ M=2e8Msun
 - DM halo -> N=100,352,000
 ✓ M=4.9e10Msun
 - -> mass resolution = 510Msun

> Softening parameter, $\varepsilon = 0.03$ kpc

- Results would be reliable at t=10Gyr
 - ✓ Power et al. (2003); van den Bosch & GO (2018)
- ➤ Tree code for GPU clusters (GO et al. 2013)

Distribution of stripped matter

- Result from the run of the cored model
 - Similar distribution in the run of the cuspy model
- DM significantly stripped
- Bulk of stars is settled at the tip of the line (center of the satellite)

Mass evolution

- DM mass reduced significantly in $\alpha = 0.1$ (cored) model
 - By a factor of ~ 1000 at 10Gyr
- Less significant reduction in $\alpha = 1.0$ (cuspy) model
- Stellar mass does not change significantly in both models

Comparison with van Dokkum et al. (vD)

Comparison with van Dokkum et al. (vD)

53

Caveat on the Ogiya (2018) model

- Galaxy structure and merger orbital parameters are assumed to follow observations and empirical relations at z = 0
- DF2 is a satellite galaxy and must have been accreted earlier
- Accreted higher z -> Smaller orbits
 - Stronger tidal force, larger number of pericentric passage
 More significant tidal massloss
 - Even satellites with a NFW halo might reproduce the observation

DASH library (GO et al. 2019)

- Idealized N-body simulations of minor halo mergers
 - Both halos follow the NFW density profile initially
 - Large mass ratio -> Dynamical friction is negligible, orbit is 'frozen'
 -> Host halo = analytical potential
 - Scale free nature of gravity -> scalable to any small mass subhalos
 - Fulfill numerical criteria (van den Bosch & GO 2018)
- 2 orbital parameters + 2 halo concentrations
 - >2000 simulations

Mass evolution

- Tr: radial period
- More significant mass loss
 - On more radial and tightly bound orbits
 - With less (more) concentrated sub- (host) halos

Machine Learning model

GO et al. (2019)

- Trained a machine learning (ML) model describing the mass evolution
 - Accurate at the 0.1 dex level

GO, Taylor & Hudson (2021)

ML prediction

- Bound mass evolution in the cuspy model
- Color lines = prediction by the ML model
- The mass criteria can be satisfied if DF2 accreted early enough (z > 1.5)

How rare is DF2?

- Test if the bound mass below the critical value
 - >10000 models
- PDF of orbital params (Jiang et al. 2015)

How rare is DF2?

- DF2 is possible but very rare
- Considering orbit contraction due to the smooth mass growth of the host, prob. increased

Zacc	P _{no-cont}	P _{with-cont}
0.0		
1.0	0.0	0.0
1.5	3.6×10^{-5}	2.8×10^{-4}
2.0	3.3×10^{-5}	3.7×10^{-4}

GO, Taylor & Hudson (2021)

GC orbital evolution

- Some GCs can escape from the satellite galaxy \checkmark 10GCs in the simulation
- Including more GCs in the simulation, observed N of GCs may be explained
 - ✓12 or more GCs expected
 - Burkert & Forbes (2019)

GCs in the mini-bullet cluster scenario

Pros

Extremely high pressure environment in the galaxy collision

- → Formation of multiple GCs at the collision (Silk 2019; Lee et al. 2021)
- → Explain homogeneous properties of GCs? (Fensch et al. 2019; van Dokkum et al. 2022b)

Caveats

GCs should have felt dynamical friction

- \rightarrow Distribution of GCs was more extended than observed
- \rightarrow Such GCs were susceptible to the tidal force

Tidal puffing-up does not help as only one encounter is expected

How susceptible are GCs to the tidal force?

• Comparison of the mean densities of DF2 and NGC1052 (indicator of tidal susceptibility)

 $\bar{\rho}_{\rm sat}(r_{\rm t}) = v_{\rm s} - \alpha' \bar{\rho}_{\rm host}(R),$

 e.g. GCs at r=5kpc will be stripped from DF2 if the formation place was R~120kpc

How many GCs are stripped?

- Cumulative distribution of satellite galaxies -Han et al. (2016)
- Weighting fstrip with the satellite number, 33-59 GCs should have been formed originally
 - Difficult to form such a large number of massive GCs (Lee at al. 2021)
 - N of GCs = Challenge for the scenario

