

On the formation process of dark matter deficient galaxies

Go Ogiya (ZJU)

with Frank van den Bosch (Yale); Andi Burkert (Munich); Xi Kang (ZJU)

1

NGC1052-DF2 (DF2)

• Ultra diffuse galaxy (UDG) in the group of NGC1052

Discovered by Karachentsev et al. (2000)

- Mstar = 2e8Msun
- Galaxy formation and evolution models expect Mhalo \sim 5e10Msun

Shen et al. (2021)

NGC1052-DF2 (DF2)

- van Dokkum et al. (2018) inferred the dynamical mass of DF2
	- \cdot 10 globular clusters = kinetic tracers
- Inferred dynamical mass $= 3.4e8$ Msun within $R=7.6$ kpc
	- Stellar mass ~ 2e8Msun
	- Dark matter (DM) mass ~ 1e8Msun
	- cf. Theoretical models expect \sim 5e10Msun

DF2 is a DM deficient galaxy

+ DMDGs in the same galaxy group and in the Virgo cluster, even in the field?

(e.g. van Dokkum+19, Guo+20, Toloba+23)

Notable properties of DM deficient gals

- 1. Extremely small DM mass
- 2. Diffuse stellar component

Q. Such extreme galaxies can be formed within the standard framework of galaxy formation?

Tidal interaction as a formation scenario

- Violent tidal massloss
- \rightarrow Extremely small DM mass?
- Tidal puffing-up
- \rightarrow Diffuse stellar component?

Simulation setup

NGC1052 = time-varying NFW potential

- \checkmark Mass growth (Correa et al. 2015)
- \checkmark c(M,z) relation (Ludlow et al. 2016)

Satellite $= 2$ -component N-body system

DM deficiency

- Mass evolution at r=2.7kpc
	- Half-mass radius (Danieli et al. 2019)
- Massloss at each pericentric passage
- DM mass is reduced more significantly
- Transforming a normal satellite into a DM deficient galaxy

- "Observe" the satellite galaxy model from 100 different orientation angles
	- Line: median
	- $\sqrt{\frac{2}{15}}$ -85 percentile
- Re and σstar stay const in the absence of tide

GO, van den Bosch & Burkert (2022)

- Galaxy size increases at each pericentric passage \checkmark Energy injection through tidal shock
- Observations (pink) reasonably reproduced

GO, van den Bosch & Burkert (2022)

- Stellar vel dispersion increases at each pericentric passage \checkmark Energy injection
- Decreases in a short time \sqrt{Re} -virialization
	- \checkmark Galactic potential shallowed by tidal stripping
- Observations (pink) reasonably reproduced

GO, van den Bosch & Burkert (2022)

- Impacts less significant in cuspy counterpart
	- More resilient to tidal force
	- Adiabatic shielding
		- e.g. Spitzer (1987)

Globular clusters in DF2

- 10 globular clusters (GCs)
	- Each has ~1e6Msun
	- Orbital decay due to dynamical friction
- Extended distribution
	- $Rgc = 3.1kpc$
	- cf. $Re = 2.2 kpc$
	- Can the tidal scenario explain it?

GC orbital evolution

In the absence of tides (orange),

- GC orbit gradually decays due to dynamical friction
- σgc decreases too

GC orbital evolution

Considering tides (blue),

- Rgc behaves like Re
	- \checkmark Rapid increase at each pericenter
	- \checkmark Compete with orbital decay due to dynamical friction
- σgc behaves like σstar
- Observations reproduced (pink) assuming the cored model

Trail of diffuse galaxies?

van Dokkum et al. (2022a)

Galaxy collision formation scenario

→ **Origin of DM deficient gals?**

Semi-analytic modeling of GC orbits

- Global potential of DF2 + Dynamical friction
- "Final" condition of GCs
	- -Observations \rightarrow X, Y, Vz and M
	- -Drawing \rightarrow Z, Vx and Vy

(Sersic profile + Gaussian distribution; Dutta Chowdhury et al. 2019)

• Trace back the orbital evolution from $t=0$ to $t=-8Gyr$

What was the GC distribution at formation?

- GCs are expected to form at collision $(t \sim -8Gyr)$
- Maximum radius of GCs in two time-windows
- $rmax = 5-10kpc$
- cf. observed $Rgc = 3.1kpc$

How many GCs were stripped?

- Combine the rmax distribution and analytic model of tidal radius
	- e.g., at $R < 120$ kpc, more than 80% of GCs will be stripped
- \bullet N of GCs = Challenge
	- Difficult to make tens of massive GCs (Lee et al. 2021)

Summary

- Discovery of dark matter deficient galaxies
- Tidal massloss scenario reproduces observations of DF2
	- Extremely low DM mass
	- Distribution and velocity dispersion of stars and GCs
- N of GCs to form is a challenge for the galaxy collision scenario
	- GC distribution was more extended than observed
	- \rightarrow Making them susceptible to the tidal force

调试! Questions?

Galaxies live in dark matter halos

NGC1052-DF2 (DF2)

• Ultra diffuse galaxy (UDG) in the group of NGC1052

Discovered by Karachentsev et al. (2000)

• Mstar = 2e8Msun

NGC1052-DF2 (DF2)

- Ultra diffuse galaxy (UDG) in the group of NGC1052 Discovered by Karachentsev et al. (2000)
- Mstar = 2e8Msun
- Galaxy formation and evolution models expect Mhalo ~ 5e10Msun

Behroozi et al. (2013)

Active debate on DF2

Q. Low confidence due to small N of kinetic tracers? -Martin et al. (2018); Laporte et al. (2018)

A. Dynamical mass inference with diffuse stellar lights and planetary nebulae agree with van Dokkum+

-Danieli et al. (2019); Emsellem et al. (2019)

Active debate on DF2

Q. Bias due to data processing schemes?

-Hayashi & Inoue (2018)

A. More sophisticated Jeans analysis agrees with van Dokkum+ -Wasserman et al. (2019)

Active debate on DF2

Q. Shorter distance to DF2 (13Mpc) -> DF2 is a normal galaxy? -Trujillo et al. (2019)

-cf. van Dokkum+ supposed 20Mpc

A. $D = 22$ Mpc based on deeper observation data, making DF2 more abnormal

-Shen et al. (2021)

NGC1052-DF4

- Second DM deficient galaxy
- Resembles to DF2
	- Stellar mass
	- DM mass
	- Size
	- Globular clusters

van Dokkum et al. (2019)

Tidal force

- : gravity on the COM
- : gravity at given points

\implies minus \implies = Tidal force \implies

- is dynamically heated up
- loses its mass (tidal stripping)

Tidal interaction of DF2 vs NGC1052

Tidal interaction of DF2 vs NGC1052

- Stars are in the halo center
- More resilient to tidal force
- Shallowing the galaxy potential
- Injection of kinetic energy by impulsive tidal shock

```
Puffing-up of stellar component
            ↓
Diffuse stellar component?
```


Tidally deformed DF2 Keim et al. (2022)

See also Montes et al. (2020)

Simulation setup

 $xc=1.0, \eta=0.3$ $zacc = 1.5$

NGC1052 = time-varying NFW potential

- Mass growth (Correa et al. 2015)
- \checkmark c(M,z) relation (Ludlow et al. 2016)

$Satellite = N-body$, Stars -> Deprojected Sersic profile

- (Prugniel & Simien 1997)
	- \checkmark Re=1.25kpc (van der Wel et al. 2014)
	- $\sqrt{n}=1$
	- \checkmark M=2e8Msun
- DM halo -> Transformed NFW profile
- (Read et al. 2016)
	- \checkmark M=6e10Msun
	- \checkmark c=6.6
	- \checkmark core or cusp
- Numerical params
	- \checkmark N = 15Mio -> mp = 4e3Msun
	- \checkmark Softening = 14pc
	- \checkmark Results numerically converged

Orbit and mass evolution

- Satellite orbit shrinks due to \checkmark Growth of the host \checkmark Self-friction
- Massloss at each pericentric passage \checkmark DM mass is reduced by a factor of \sim 70 $\sqrt{\frac{1}{100}}$ Reduction of the stellar mass is 30% \checkmark Stronger impacts in the cored model

Dynamical friction

• Deceleration force due to the density wake

Orbital decay due to dynamical friction

- Nusser (2018)
	- Mdyn \sim 1e8Msun, single GC -> sinking within a few Gyr

GC-GC scattering as dynamical buoyancy

- Dutta Chowdhury et al. (2019)
	- Mdyn ~ 1e8Msun, multiple GCs

Need other buoyancy forces

Even if dynamical buoyancy of GC-GC scattering is considered, GC orbits gradually decays

Tidal interaction as another buoyancy?

- Shallowing the galaxy potential (tidal stripping)
- Injection of kinetic energy by impulsive tidal shock

Expansion of GC orbits

Orbital decay due to dynamical friction

Simulation setup

- Mass of 10 star particles around r=2.5kpc is increased to 1e6Msun
	- e.g. Forbes et al. (2017); Hudson & Robison (2018)
	- Distribution consistent with obs within \sim 100Myr

Simulation setup

 $NGC1052 = fixed potential$

- NFW halo (α =1, β =3)
	- \checkmark M=1.1e13Msun
	- \checkmark ch=5.8 (van Gorkom et al. 1986)

$$
\rho(r) = \frac{\rho_0}{(r/r_0)^{\alpha} [1 + (r/r_0)]^{\beta - \alpha}}
$$

$$
c \equiv R_v/r_0
$$

Satellite $= N$ -body

- Stars -> Hernqust (1990; α =1, β =4)
	- \checkmark M=2e8Msun
	- \checkmark Re=0.93kpc (Lange et al. 2015)
- DM halo
	- \checkmark M=4.9e10Msun
	- \checkmark α =0.1 (Di Cintio et al. 2014) or 1.0 (NFW),

 $\beta=3$

- Penarrubia et al. (2010); Errani et al. (2015)
- \checkmark cs=11.2 (Ludlow et al. 2016)

van den Bosch, GO, Hahn & Burkert (2018)

Simulation setup

 $Subhalo = N-body system$

- \triangleright Number of particles, N
	- Stars $\sim N=409,600$ \sqrt{M} =2e8Msun
	- DM halo $\sim N=100,352,000$ \checkmark M=4.9e10Msun
	- \rightarrow mass resolution = 510Msun

 \triangleright Softening parameter, $\varepsilon = 0.03$ kpc

- Results would be reliable at $t=10Gyr$
	- Power et al. (2003); van den Bosch & GO (2018)
- ▶ Tree code for GPU clusters (GO et al. 2013)

Distribution of stripped matter

- Result from the run of the cored model
	- \checkmark Similar distribution in the run of the cuspy model
- DM significantly stripped
- Bulk of stars is settled at the tip of the line (center of the satellite)

Mass evolution

- DM mass reduced significantly in α =0.1 (cored) model
	- By a factor of \sim 1000 at 10Gyr
- Less significant reduction in α = 1.0 (cuspy) model
- Stellar mass does not change significantly in both models

Comparison with van Dokkum et al. (vD)

Comparison with van Dokkum et al. (vD)

Caveat on the Ogiya (2018) model

- Galaxy structure and merger orbital parameters are assumed to follow observations and empirical relations at $z = 0$
- DF2 is a satellite galaxy and must have been accreted earlier
- Accreted higher z -> Smaller orbits
	- Stronger tidal force, larger number of pericentric passage
		- -> More significant tidal massloss
	- Even satellites with a NFW halo might reproduce the observation

DASH library (GO et al. 2019)

- Idealized N-body simulations of minor halo mergers
	- Both halos follow the NFW density profile initially
	- Large mass ratio -> Dynamical friction is negligible, orbit is 'frozen' \rightarrow Host halo = analytical potential
	- Scale free nature of gravity -> scalable to any small mass subhalos
	- Fulfill numerical criteria (van den Bosch & GO 2018)
- 2 orbital parameters + 2 halo concentrations
	- >2000 simulations

Mass evolution

- Tr: radial period
- More significant mass loss
	- On more radial and tightly bound orbits
	- With less (more) concentrated sub- (host) halos

Machine Learning model

GO et al. (2019)

- Trained a machine learning (ML) model describing the mass evolution
	- Accurate at the 0.1 dex level

GO, Taylor & Hudson (2021)

ML prediction

- Bound mass evolution in the cuspy model
- Color lines = prediction by the ML model
- The mass criteria can be satisfied if DF2 accreted early enough $(z > 1.5)$

How rare is DF2?

- Test if the bound mass below the critical value
	- \cdot >10000 models
- PDF of orbital params (Jiang et al. 2015)

How rare is DF2?

- DF2 is possible but very rare
- Considering orbit contraction due to the smooth mass growth of the host, prob. increased

GO, Taylor & Hudson (2021)

GC orbital evolution

- Some GCs can escape from the satellite galaxy \checkmark 10GCs in the simulation
- Including more GCs in the simulation, observed N of GCs may be explained
	- $\sqrt{12}$ or more GCs expected
		- - Burkert & Forbes (2019)

GCs in the mini-bullet cluster scenario

Pros

Extremely high pressure environment in the galaxy collision

- \rightarrow Formation of multiple GCs at the collision (Silk 2019; Lee et al. 2021)
- \rightarrow Explain homogeneous properties of GCs? (Fensch et al. 2019; van Dokkum et al. 2022b)

Caveats

GCs should have felt dynamical friction

- \rightarrow Distribution of GCs was more extended than observed
- \rightarrow Such GCs were susceptible to the tidal force

Tidal puffing-up does not help as only one encounter is expected

How susceptible are GCs to the tidal force?

 Comparison of the mean densities of DF2 and NGC1052 (indicator of tidal susceptibility)

$$
\bar{\rho}_{\rm sat}(r_{\rm t}) = \text{vs} \quad \alpha' \bar{\rho}_{\rm host}(R),
$$

• e.g. GCs at r=5kpc will be stripped from DF2 if the formation place was R~120kpc

How many GCs are stripped?

- Cumulative distribution of satellite galaxies -Han et al. (2016)
- Weighting fstrip with the satellite number, 33-59 GCs should have been formed originally
	- Difficult to form such a large number of massive GCs (Lee at al. 2021)
	- **N of GCs = Challenge for the scenario**

