

DECaLS DR9 Cosmology Constraints from Galaxy Clustering and Weak Lensing

Haojie XU 许浩杰

Shanghai Astronomical Observatory

Collaboration Workshop on Cosmology and Galaxy Formation, SJTU, 06/19/2023

In main collaboration with:

Hekun Li, Jun Zhang, Xiaohu Yang, Pengjie Zhang, Min He, Yizhou Gu, Jian Qian, Ji Yao

The "S₈" tension

Wp measurements in photometric samples

Yang+2021, Zhou+2021

Wp measurements in photometric samples

Yang+2021, Zhou+2021

Intrinsic Wp in photometric samples

Wang+2019, 2021

Intrinsic Wp in photometric samples

Intrinsic Wp in photometric samples

Wang+2019, 2021

DECaLS DR9

• ~10,000 sq. deg. (black contour, footprint of shear catalog)

DECaLS DR9

- ~10,000 sq. deg. (black contour, footprint of shear catalog)
- Photo-*z* estimation (random forest)
 - r-band magnitude, g r color, r z color, z -W1 color, W1 -W2 color, half-light radius, axis ratio, shape probability
- Photo-*z* quality control:
 - $0 \le \text{photo-}z \le 0.9$, $z_{\text{mag}} \le 21$, red galaxies
 - $\sigma_z \sim 0.02$

DECaLS DR9

- ~10,000 sq. deg. (black contour, footprint of shear catalog)
- Photo-*z* estimation (random forest)
 - r-band magnitude, g r color, r z color, z -W1 color, W1 -W2 color, half-light radius, axis ratio, shape probability
- Photo-*z* quality control:
 - $0 \le \text{photo-}z \le 0.9$, $z_{\text{mag}} \le 21$, red galaxies
 - $\sigma_z \sim 0.02$

Photo-*z* performance of lens samples

Xu+ 2023, to be submitted

Wp and galaxy-galaxy lensing measurements

- Large-scale measurements
 - linear bias (minimal bias model)
 - scale cuts:
 - $r_p > 8$ Mpc/h for Wp
 - $r_p > 12$ Mpc/h for ESD
- Imaging systematicsESD measurements

Wp and galaxy-galaxy lensing measurements

• Large-scale measurements

- Wp and Imaging systematics
 - spurious correlation in lens sample
 - no correlation between corrected lens samples with imaging quantities.

• ESD measurements

Wp and galaxy-galaxy lensing measurements

- Large-scale measurements Imaging systematics
- ESD measurements
 - Fourier_Quad pipeline
 - 10^2 m = (5±3, 3±3), 10^5 c = (0±3, -10±3)
 - $z_{mag} < 21$, S/N cut • $z_s > z_1 + 0.25$
 - take photo-*z* distribution of source galaxies into account

Wp and ESD modeling

- (Each lens sample) 4 free parameters
 - effective photo-*z* uncertainty, linear bias, omega_m, sigma_8

Xu+ 2023, to be submitted

Wp and ESD modeling

- (Each lens sample) 4 free parameters
 - effective photo-*z* uncertainty, linear bias, omega_m, sigma_8
- Wp modeling
 - Gaussian photo-*z*
 - *halofit* nonlinear power spectrum
 - residual redshift-space distortion

Wp and ESD modeling

- (Each lens sample) 4 free parameters
 - effective photo-*z* uncertainty, linear bias, omega_m, sigma_8
- Wp modeling
 - Gaussian photo-*z*
 - *halofit* nonlinear power spectrum
 - residual redshift-space distortion
- ESD modeling
 - unity cross correlation coefficient
 - magnification bias
 - fixed luminosity slope
 - mean lens/source redshift

• Tight constraints in low redshifts $\sigma_{S_8} \sim 0.02$

- Tight constraints in low redshifts
- Consistent with Planck results

- Tight constraints in low redshifts
- Consistent with Planck results
- Mild trend of S_8 dependence on redshift

- Tight constraints in low redshifts
- Consistent with Planck results
- Mild trend of S_8 dependence on redshift
- Underestimated galaxy bias in high redshifts

Possible caveats

- Imaging systematics
- Shape and ESD measurements

Possible caveats

- Imaging systematics
- Shape and ESD measurements
- Gaussian photo-z
- Realistic treatments of catastrophic outliers
- Intrinsic alignments
- Magnification bias

Possible caveats

- Imaging systematics
- Shape and ESD measurements
- Gaussian photo-z
- Realistic treatments of catastrophic outliers
- Intrinsic alignments
- Magnification bias
- Covariance matrix
- Incorporate the statistical uncertainties of Planck constraints

•

Two tests

Xu+ 2023, to be submitted

Two tests

Two tests

Xu+ 2023, to be submitted

Future prospects

- Imaging systematics
- Shape and ESD measurements
- Gaussian photo-z
- Realistic treatments of catastrophic outliers
- Intrinsic alignments
- Magnification bias
- Covariance matrix
- Incorporate the statistical uncertainties of Planck constraints

•

Future prospects

- Imaging systematics
- Shape and ESD measurements
- Gaussian photo-z
- Realistic treatments of catastrophic outliers
- Intrinsic alignments
- Magnification bias
- Covariance matrix
- Incorporate the statistical uncertainties of Planck constraints

More manpower!

Future prospects

- Imaging systematics
- Shape and ESD measurements
- Gaussian photo-z
- Realistic treatments of catastrophic outliers
- Intrinsic alignments &
- Magnification bias
- Covariance matrix
- Incorporate the statistical uncertainties of Planck constraints
- ...
- Different lens: galaxy groups

Take-home messages:

- Large lens samples
 - precise 2PCFs measurements
- Abundant sources galaxies
 - precise lensing measurements
- Tight constraints on the cosmological parameters
 - $\sigma_{S_8}\sim 0.02$
- Mild S_8 dependence on lens redshift
 - need more checks

Back-up slides

ZI	$M_{\rm z}^{0.5}-5\log h$	$N_{gal,l}$	$\eta imes 10^{-2}$	$\bar{z_l}$	$\bar{z_s}$	$lpha_{ m mag}$	χ^2_r	σ_z	b_g	σ_8	Ω_m	S ₈
[0.1, 0.3]	[-23.0, -20.0]	4.76×10 ⁶	6.0	0.23	0.67	3.0	0.94	$0.012\substack{+0.0002\\-0.0002}$	$1.22\substack{+0.02\\-0.02}$	$0.72^{+0.03}_{-0.03}$	$0.39\substack{+0.02 \\ -0.02}$	$0.82\substack{+0.03 \\ -0.03}$
[0.2, 0.4]	[-23.0, -20.0]	6.82×10^{6}	5.2	0.32	0.74	2.8	0.91	$0.016\substack{+0.0002\\-0.0002}$	$1.18\substack{+0.02 \\ -0.02}$	$0.80\substack{+0.02 \\ -0.02}$	$0.35\substack{+0.01 \\ -0.01}$	$0.87\substack{+0.02 \\ -0.02}$
[0.3, 0.5]	[-23.0, -20.5]	7.33×10^{6}	3.6	0.41	0.82	2.7	1.06	$0.019\substack{+0.0003\\-0.0003}$	$1.20\substack{+0.02\\-0.02}$	$0.81\substack{+0.03 \\ -0.03}$	$0.34\substack{+0.01 \\ -0.01}$	$0.86\substack{+0.03\\-0.03}$
[0.4, 0.6]	[-23.0, -21.0]	5.46×10^{6}	3.4	0.50	0.88	2.6	1.22	$0.016\substack{+0.0002\\-0.0002}$	$1.24^{+0.03}_{-0.02}$	$0.84^{+0.03}_{-0.03}$	$0.34\substack{+0.01 \\ -0.01}$	$0.89\substack{+0.04\\-0.04}$
[0.5, 0.7]	[-23.0, -21.0]	7.12×10^{6}	3.1	0.61	0.96	2.6	1.39	$0.018\substack{+0.0002\\-0.0002}$	$1.27\substack{+0.03 \\ -0.03}$	$0.84^{+0.05}_{-0.05}$	$0.34\substack{+0.01 \\ -0.01}$	$0.90\substack{+0.05 \\ -0.06}$
[0.6, 0.8]	[-23.0, -21.5]	3.97×10^{6}	2.8	0.70	1.02	2.5	1.92	$0.020\substack{+0.0003\\-0.0003}$	$1.24\substack{+0.04 \\ -0.04}$	$0.97^{+0.07}_{-0.08}$	$0.33^{+0.01}_{-0.01}$	$1.02\substack{+0.08\\-0.09}$
[0.7, 0.9]	[-23.0, -22.0]	1.87×10^{6}	1.8	0.81	1.10	2.4	0.80	$0.023\substack{+0.0005\\-0.0005}$	$1.38^{+0.16}_{-0.08}$	$0.91\substack{+0.13 \\ -0.20}$	$0.35^{+0.02}_{-0.02}$	$0.98\substack{+0.16 \\ -0.22}$

Figure 12 Comparison of cosmological parameters constraints with (blue) and without (orange) imaging systematics correction in the lens sample.

Figure A14 The B mode (blue) from lens sample and the ESDs measured around the random (red).

Figure A15 The comparison of ESD measurements with a different lens-sources photo-*z* separation. The ESDs measured with a larger lens-sources photo-*z* separation ($\Delta z = 0.35$, red) is statistically consistent with the fiducial measurements ($\Delta z = 0.25$, blue).