

MAHGIC: A Model Adapter for th Inter-Connection

Yangyao Chen

yangyaochen.astro@foxmail.c

In collaboration with: Houjun Mo, Cheng Li, Kai V Xiaohu Yang

Toward Precise Halo-based Galaxy Model

CAMTree

A Conditional Abundance Matching Method of Extending Subhalo Merger Trees

A Model Adapter for the Halo-Galaxy Inter-Connection

MAHGIC

Massive Dark Matter Halos at High Redshift and Their Implications for Observations in the JWST Era

Guo+ 2010, Subhalo Abundance Matching

100.00

CAMTree: A Conditional Abundance Matching Method of Extending Subhalo Merger Trees

$$
p(X_{missed}, X_{conditioning}) = p(X_{conditioning})p(X_{missed}|X_{conditioning})
$$

Target Simulation Large box, low resolution

Missed variables: $t_{disruption}$, **x**, **v**, spin, $M_{subhalo}$, v_{max} , σ_v , $r_{half\, mass}$,

Read from target simulation Learned from reference simulation

Conditioning variables: $M_{h, host}$, host halo shape, z_{form} , L_{orbit} , ...

Reference Simulation Small box, high resolution

An application of CAMTree Extend ELUCID ($L = 500 h^{-1}Mpc$) with TNG100-Dark ($L = 75 h^{-1} Mpc$, 30x better mass resolution)

Two features of the extension algorithm:

- Self consistency: subhalos resolved by target simulation are kept.
- Shape preservation: shape and orientation of the host halo is preserved.

Simulation Cosmology !box $\overline{ }$ supplement lo Statistics i JULJ
J CAMTree: Recovery of Key Subhalo Statistics

CAMTree: Recovery of Key Subhalo Statistics

Extended Central Subhalo Assembly History

CAMTree: Recovery of Key Subhalo Statistics

Redshift-space distortion pattern

 $\rho_{\rm N}({\bf r})$

 $log M_{halo, host} = [11.0, 12.0]$

TNGDark ELUCID
ELUCID

 $[12.0, 12.8]$

 $(12.8, 13.3)$

 $(13.3, 15.0)$

 $\frac{\log \mathrm{M_{inf, sat}}}{\ket{-\begin{bmatrix} 10.0, 10.1 \end{bmatrix}}} \$

 $-1-$

MAHGIC: a Model Adapter for the Halo-Galaxy Inter-Connection

Dark Matter Halos

The effects of merger tree extension to halo-based model

 $\begin{tabular}{c} \multicolumn{2}{c}{\textbf{1} \quad \textbf{1} \quad \textbf{1} \quad \textbf{2} \quad \textbf{3} \quad \textbf{5} \quad \textbf{6} \quad \textbf{8} \quad \textbf{1} \quad \textbf{1} \quad \textbf{1} \quad \textbf{2} \quad \textbf{5} \quad \textbf{6} \quad \textbf{7} \quad \textbf{8} \quad \textbf{8} \quad \textbf{9} \quad \textbf{1} \quad \textbf$

Passive

Map the distribution and assembly of galaxies with MAHGIC "copies" from different hydrodynamic simulations (TNG, EAGLE) into the reconstructed density field (ELUCID)

Massive Dark Matter Halos at High z and Their Implications for Observations in the JWST Era

Labbe+ 2023, JWST/CEERS images and SED-fitted stellar masses

A forward model is the key to completely incoporate sources of errors and fairly interpret the observations

The simplest model: a constant star formation efficiency $\varepsilon_* = 50\%$.

Find low-z descendants of JWST high-z counterparts using constrained simulation

6/21/23 Empirical Model, Yangyao Chen @ Suzhou Bay 16

- >90% z=0 central galaxies in $M_h \ge 10^{15} M_{\odot}$ clusters are descendants of massive z=8 JWST galaxies.
- ~30% are the main-descendants.

Coma's Assembly History

Abell 1564 - an equal-mass merger remnant

Abell 1630 - a lonely giant

Toward Precise Halo-based Galaxy Model

CAMTree

A Conditional Abundance Matching Method of Extending Subhalo Merger Trees

A Model Adapter for the Halo-Galaxy Inter-Connection

MAHGIC

Massive Dark Matter Halos at High Redshift and Their Implications for Observations in the JWST Era

The Complex Picture of Galaxy Formation

- Cosmology as the initial condition and background.
- Long time-scale evolution from the dawn to present.
- Multi-scale coupling from LSS, clusters, galaxies, gas cloud/star/BHs, etc.

Missing-Subhalo Problem for Halo-based Models

In a real application of galaxy modeling

- The lower limit of sample size (simulation volume) is determined by the statistical target.
- The upper limit of CPU hours are detemined by the fundings at hand.
- Resolution upper limit = max CPU hours / min sample size.

Something that is missed with limited resolution power

- The assembly history of a central subhalo at high-z is missed, when its halo mass is below the resolution limit.
- The dynamic evolution of a satellite subhalo is missed, after it is disrupted numerically.

For ELUCID, $M_{halo,min} = 10^{10} h^{-1} M_{\odot}$ For TNG100-1-Dark, $M_{halo,min} = 2 \times 10^8 h^{-1} M_{\odot}$

time

The Method: Learn From a High-resolution Simulation to Extend a Low-resolution Simulation

The extension of central assembly history:

The Method: Learn From a High-resolution Simulation to Extend a Low-resolution Simulation

The extension of satellite dynamic evolution

The Method: Learn From a High-resolution Simulation to Extend a Low-resolution Simulation Assign the phase-space coordinates with conditional abundance matching Prob Dist $_{\alpha}$ 1. Seprate the joint distribution: p(x, v, infall mass, host mass, host halo shape, ...) $=$ p(infall mass, host mass, host halo shape, ...) $p(x, v \mid \text{infall mass}, \text{host mass}, \text{host halo shape}, ...)$ Completely resolved by ELUCID Partly missed by ELUCID $\log\,M_{\rm inf,\,sat}/M_{\rm halo,}$ 2. Learn the missed part from TNGDark: p(x, v| infall mass, host mass, host halo shape, ...) is estimated in each "cell" of the conditioning variable (infall mass, host mass, host halo shape, ...). $\log \mathrm{M}_{\mathrm{halo,\,hos}}$ 13 3. In each cell, match each ELUCID-resolved satellite to a TNGDark one (in some predefined order), and remove them from the cell. $\log r_{\rm lf,c}$ 4. Randomly match ELUCID-extended satellites to the remaining ones of TNGDark.

 -2

14

FIGURE 2. Marginal distributions of I = 0 Associated Spaces of properties that are used as the properties that are used as the conditioning variables in cells in the conditioning variables in the conditioning variables in

10

 0.6

z = 8 – 14 Cosmic UV Luminosity Densities from JWST/CEERS Samples

Tensions with ΛCDM

How to reproduce JWST observations within ΛCDM paradigm?

- Split theory-to-observation mocking into steps.
- Inject Λ CDM-compatible uncertainties into each step.
- Propagate uncertainties to the final observable forwardly and make comparison with JWST results.

 $\log M_* [\rm{h}^{-1}M_{\odot}]$

Method:

Assembly History of Massive Clusters: Coma

Assembly History of Massive Clusters: Abell 1630 and 1564

^{6/21/23} Empirical Model, Yangyao Chen @ Suzhou Bay 38