

The Measurements of Galaxy Abundance and Clustering at 0 < z < 2

Speaker: Jiacheng Meng (孟佳程)

Email: meng.jiacheng@foxmail.com

Supervisors: Prof. Cheng Li (李成), Prof. Houjun Mo (莫厚俊)

Collaborators: Yangyao Chen (陈洋遥), Kai Wang (王凯), Prof. Lizhi Xie (谢利智), Zhen Jiang (蒋桢)

Collaboration workshop on cosmology and galaxy formation, Shanghai/Suzhou, 2023.6.21

- 1. Introduction
- Conditional luminosity function with the galaxy imaging survey at low-z.
 (Meng, J., Li, C., Mo, H. J., et al. 2023, ApJ, 944, 75)
- Measuring galaxy abundance and clustering at high redshift from incomplete spectroscopic data: test on mocks. (Meng, J., Li, C., Mo, H. J., et al. submitted to ApJ, arXiv: 2008.13733)
- 4. Summary

1. Woking pipeline for galaxy formation in ΛCDM universe

1. Galaxy spectroscopic survey and image survey

Spectroscopic survey:

Low-z: 2dFGRS, SDSS (r < 17.77, 1% $M_{*,MW}$), GAMA...

High-z: DEEP2, VVDS, zCOSMOS, VIPERS, PFS (future), MOONS (future)...

Credit: Simon Driver and the GAMA team. https://www.icrar.org/our-research/science-program/

Image survey:

DESI legacy survey (r < 23.5, $0.01\% M_{*,MW}$), DES, HSC SSP, KiDS, CSST (future), Euclid (future), LSST (future)...

Shortcoming:

- Low-z redshift surveys are still shallow.
 - -Combine deep image data
- High-z data are lacking and incomplete. —Large scale survey in the future.

1. How to study the halo-galaxy connection

Statistical Analysis of the survey (SPACE)

- Scaling relations of galaxy Properties: $M_* - \sigma$, Tully-Fisher relation, Faber-Jackson relation...
- Abundance: (Conditional) Galaxy stellar mass/luminosity function...
- Clustering: 2-point correlation function, 3point correlation function...
- Evolution of the above relations and functions.

Models for Halo-galaxy Connection

- Statistical model: Abundance Matching, Halo Occupation Distribution (HOD).
- Semi-analytical model.
- Empirical model.
- Hydrodynamical simulation.

We need mock surveys!

- Test the method for the statistical analysis and quantify the systematic errors.
- Compare the models and observations, different models fairly.
- Make the predictions for the survey in the future.

2. The conditional luminosity function at low redshift

Conditional luminosity function $\Phi\left(L \mid M_{\rm h}\right)$

2. The conditional luminosity function at low redshift

Faint-end slope α ?

2. The conditional luminosity function at low redshift

Faint-end slope α ?

6

2. The method to identify member galaxies from imaging data

In our work: SDSS group catalog (Yang+07) + DESI Legacy Imaging Survey DR9 (r < 23).

Projection effect

 $\vec{\mathbf{q}}$: galaxy property vector; estimated at group redshift z_i

Conditional distribution function:

$$\Phi\left(\overrightarrow{\mathbf{q}} \mid M_{\mathrm{h}}\right) = \left\langle \Phi_{\mathrm{grp},i}\left(\overrightarrow{\mathbf{q}} \mid M_{\mathrm{h}}\right) - f_{\mathrm{A},i} \times \Phi_{\mathrm{bkg},i}\left(\overrightarrow{\mathbf{q}} \mid M_{\mathrm{h}}\right) \right\rangle_{\mathrm{H}}$$

K-correction for photometric galaxies:
 Use the nearest neighbor in the observed (g-r)-(r-z)-redshift space from NYU-VAGC.

2. CLFs measured down to $M_{\rm r} \sim -10$, $2 \, { m mag}$ deeper than previous work

Faint-end slope $\alpha \sim -1.6$

- Independent on halo mass;
- Comparable to general
 galaxy sample, e.g. SDSS
 LF (Blanton+05a; Li+22),
 SDSS GSMF (Chen+19) and
 GAMA GSMF (Driver+22).

2. Old satellites present steep upturn at faint end

• The faint end slopes are independent on halo mass for both red and blue galaxies.

2. Old fraction of satellite galaxies and characteristic stellar mass scale $M_* \sim 10^{9.5} M_{\odot}$

Characteristic stellar mass is independent on halo mass.

• Failure:

TNG, EAGLE and GABE overpredict the quenched fraction.

• Success:

GAEA: large cold gas fraction at infall+improved satellite quenching;

L-Galaxies (Henriques+17): comprehensive treatment of satellite quenching.

10

3. Mock catalog for high redshift spectroscopic survey

	SDSS (main sample)	zCOSMOS	VIPERS	PFS (future)
Selection criteria	r < 17.77	<i>I</i> < 22.5	I < 22.5	y < 22.5 or $J < 22.8$
Redshift range	z < 0.3	0.1 < z < 1.2	0.5 < z < 1.2	0.7 < z < 1.7
Area	8000 deg ²	1.6 deg ²	16 deg ²	14.5 deg ²
Number	~1 million	~20k	~90k	~250k
Sampling rate	Nearly 100%	56% (central region) 48%(overall region)	30%	50% (z < 1) 70% (z > 1)

We need mock catalogs!

3. The pipeline of the construction of the high-z mock surveys

1. N-body simulation

 ELUCID N-body simulation (Wang+16)

2. Model galaxy

 Empirical model (Lu+14, 15; Chen+19)
 + age distribution matching (Hearin+13)

3. The pipeline of the construction of the high-z mock surveys

1. N-body simulation

 ELUCID N-body simulation (Wang+16)

2. Model galaxy

 Empirical model (Lu+14, 15; Chen+19)
 + age distribution matching (Hearin+13)

3. Construct lightcone

(Blaizot+05)

4. Observational effect

- Flux limit selection criteria.
- Sampling rate.
- Fiber/slit collision.

..

We get the mock survey!

3. The pipeline of the construction of the high-z mock surveys

We have constructed 20 sets of mocks for **zCOSMOS, VIPERS and PFS galaxy-evolution** survey which are publicly available at <u>https://lig.astro.tsinghua.edu.cn/astrodata/</u>

PFS-like survey XMM-LSS field

3. The observation effects in high-z survey

	Sampling rate effect			
	Target sampling rate	Redshift success rate	Fiber/Slit collision effect	Flux limit effect
Abundance	Weights based on local density.	Weights based on galaxy properties.	No correction is needed.	$rac{V_{ m survey}}{V_{ m max}}$ + phot. sam Schmidt 1968
Clustering			$F(\theta) = \frac{1 + w_{p}(\theta)}{1 + w_{s}(\theta)}$ Hawkins+03, Li+06	Weighting method Our new method!

W_{sky}

 $W_{\rm coll}$

We take PFS-like mock survey as an example to study those observation effects and make the prediction for the PFS survey.

3. Flux limit effect on the projected 2PCF measurement

- Underestimate the projected 2PCF (Meneux+08, 09; Marulli+13).
- Miss **low-mass red galaxies** which are satellite galaxies in massive halos and have large M_*/L .

Conventional method: $w_{sky} \times w_{coll}$

3. Weighting scheme to correct flux limit effect

Our method is valid for all stellar mass and redshift and also for red and blue galaxy samples.

3. Test the method for measurement of abundance with our high-z mock surveys

3. Quantify the total errors of GSMF with our mock surveys

The error of GSMF for PFS is about 2 times smaller compared with zCOSMOS.

3. Quantify the total errors of 2PCF with our mock surveys

Summary

• Low redshift conditional luminosity function with the galaxy image survey.

(Meng, J., Li, C., Mo, H. J., et al. 2023, ApJ, 944, 75)

- ① We measure the CLF down to $M_r = -10 \sim -12 \text{ mag}$ (2 mag fainter than previous) and find clear faint-end upturn for red galaxies with $\alpha \approx -1.8$.
- ② The fraction of old/red satellite galaxies has a minimum at a characteristic luminosity at $M_{\rm r} \sim -18 \ (M_* \sim 10^{9.5} M_{\odot})$ independent on halo mass.
- Measuring galaxy abundance and clustering at high redshift from incomplete spectroscopic data: test on mocks. (Meng, J., Li, C., Mo, H. J., et al. submitted to ApJ, arXiv:2008.13733)
 - ① Construct the 20 mock catalogs for zCOSMOS, VIPERS and PFS-like (future) surveys.
 - ② The flux-limit selection criteria underestimate the projected 2PCF of low mass galaxies at high redshift. Our weighting scheme can correct it.
 - ③ We make the prediction on the errors of GSMF and projected 2PCF for PFS-like survey, and they would be 2-10 times smaller than zCOSMOS survey.

Backup

Standard cosmology: Λ CDM cosmology model

- We get into the era of the precise cosmology.
- Solid foundation for studying the galaxy formation and evolution.

Statistical Analysis of the survey (SPACE)

Evolution of the above relations and functions.

Models of the halo-galaxy connection

Approaches to modeling the galaxy-halo connection

Physical models			Empirical models		
Hydrodynamical simulations	Semianalytic models	Empirical forward modeling	Subhalo abundance modeling	Halo occupation models	
Simulate halos and gas; star formation and feedback recipes	Evolution of density peaks plus recipes for gas cooling, star formation, feedback	Evolution of density peaks plus parameterized star formation rates	Density peaks (halos and subhalos) plus assumptions about galaxy–(sub)halo connection	Collapsed objects (halos) plus model for distribution of galaxy number given host halo properties	

Wechsler&Tinker 18

26

How to study the halo-galaxy connection

Models for Halo-galaxy Connection

Statistical Analysis of the survey (SPACE)

We need mock surveys!

- Test the method for the statistical analysis and quantify the systematic errors.
- Compare the models and observations, different models fairly.
- Make the predictions for the survey in the future.

$$T(M_{\rm r}) = 0.7 - 0.6 \tanh\left(\frac{M_{\rm r} + 15}{5}\right)$$

$$\log\left(\frac{Z}{Z_{\odot}}\right) = (-1.69 \pm 0.04) + (0.30 \pm 0.02) \log\left(\frac{M_*}{10^6 M_{\odot}}\right)$$
 Kirby+13

$$\log\left(\frac{M_*}{M_{\odot}}\right) = -0.22 + 0.51 \times (g-z) - 0.40 \times (M_r - 4.64) - 0.15$$
 Bell+03

$$\Psi(t) \propto (1 - f_{\rm y}) \,\delta\left(t - t_{\rm b}\right) + \left(\frac{f_{\rm y}}{t_{\rm y,o} - t_{\rm y,e}}\right) \mathcal{H}\left(t_{\rm y,o} - t\right) \mathcal{H}(t - t_{\rm y,e}) \,,$$

1. Old fraction of satellite galaxies and characteristic stellar mass scale $M_* \sim 10^{9.5} M_{\odot}$

Red galaxies are dominated by old populations.

- Characteristic stellar mass is independent on halo mass.
- Old fraction increases

 with decreasing
 luminosity for all halo
 mass below
 characteristic stellar
 mass.

1. Old fraction of satellite galaxies and characteristic stellar mass scale $M_* \sim 10^{9.5} M_{\odot}$ $\log(M_*/M_{\odot})$ 9_10 $\log(M_*/M_{\odot})$ 9_10 $\log(M_*/M_{\odot})$ 9 _ 10 8 8 11 11 8 11 1.2 Our $M_{*,ch}$, M_1 $12.0 \le \log(M_{\rm h}M_{\odot}) < 12.34$ $12.34 \le \log(N_h/M_{\odot}) < 12.68$ $12.68 \le \log(M_{\odot}M_{\odot}) < 13.03$ 1.0 Old fraction 9.0 7.0 8.0 8.0 0.2 0.0 -20 -22 -20 -22 -14 -16 -18 -22 -14 -16 -18 -16 -20 $-1\bar{8}$ -14 $M_{\rm r}$ $M_{\rm r}$ $M_{\rm r}$ $\log(M_*/M_{\odot})$ 9 $_{\blacksquare}$ 10 $\log(M_*/M_{\odot})$ $\log(M_*/M_{\odot})$ 8 8 8 11 10 11 10 11 1.2 $13.71 \le \log(M_{\rm H}M_{\odot}) < 14.05$ $13.03 \le \log(M_{\odot}/M_{\odot}) < 13.37$ $13.37 \le \log(M_{h}/M_{\odot}) < 13.71$ 1.0 Old fraction 9.0 8.0 01 0.2 0.0 -16 -18 -20 -22 -14 -16 -18 -20 -22 -14 - 16 - 18-20 -22 -14 $M_{\rm r}$ $M_{\rm r}$ Mr $\log(M_*/M_{\odot})$ 9 10 $\log(M_*/M_{\odot})$ 9 10 $\log(M_*/M_{\odot})$ 8 8 8 11 11 10 11 1.2 $14.05 \le \log(M_{\odot}/M_{\odot}) < 14.39$ $4.39 \le \log(M_{\rm h}/M_{\odot}) < 14.73$ $14.73 \leq \log(M_{\rm H})$ 1.0 < 15.08Old fraction 0.8 0.6 0.4 ·**ૠ**- · Coma DESI phot. sample Virgo 0.2 SDSS spec. sample Perseus 0.0 -14 -16 -18 -20 -22 -14 -16 -**1**8 -20 -22 -20 -22 -16-14-18 $M_{\rm r}$ $M_{\rm r}$ $M_{\rm r}$

33

2. Quenched fraction of satellite galaxies in MW-mass halos

- MW is a typical system for the quenched fraction.
- SAGA sample is incomplete at low-mass end (Karunakaran+22).

3. Sampling rate effect and fiber collision effect

Weight for fiber collision effect:

$$w_{\text{coll,ij}} = F(\theta) = \frac{1 + w_{\text{p}}(\theta)}{1 + w_{\text{s}}(\theta)}$$

3. Test the method for measurement of GSMF and LF with our high-z mock surveys

Spectroscopic sample for high-mass (bright) end and photometric sample for low-mass (faint) end.

