DarkAI: Reconstructing the large-scale density field of dark matter using AI

史峰 王梓同,杨小虎,李清洋 2023年4月22日 苏州

Reconstructing the mass distribution of the Universe

Well-understood

Initial conditions Dark matter distribution Dark matter halo Galaxy distribution

Reconstructing the mass distribution of the Universe

Well-understood

Initial conditions Dark matter distribution Dark matter halo Galaxy distribution

Opportunity to reconstruct the underlying cosmic density field

Reconstructing the mass distribution of the Universe can provide

• Velocity & Tidal field (Wang et al. 2012)

Reconstructing the mass distribution of the Universe can provide

• Velocity & Tidal field (Wang et al. 2012) • Initial density field (ELUCID, Wang et al 2016)

Reconstructing the mass distribution of the Universe can provide

• Velocity & Tidal field (Wang et al. 2012) • Initial density field (ELUCID, Wang et al 2016)

• Real-space dark matter power spectrum (Tegmark et al. 2004)

Reconstructing the mass distribution of the Universe can provide

- - 250 Z Axis (Mpc/h)
 $\frac{8}{6}$ 50 100 150 Y Axis (Mpc/h)
	- Velocity & Tidal field (Wang et al. 2012) Initial density field (ELUCID, Wang et al 2016)

Galaxy formation

Cosmology

• Real-space dark matter power spectrum (Tegmark et al. 2004)

The challenge in reconstructing the density field

1) Galaxies bias:

- Biased tracers of the underlying mass distribution
- Exact form of the bias is complicated.
- Linear bias form used to reconstructing velocity field
- Linear bias: only valid for small density fluctuations motivated more by simplicity than by physical principles

$$
\mathbf{v}(\mathbf{k}) = H \; a \, f(\Omega) \, \frac{i\mathbf{k}}{k^2} \; \frac{\delta_{\rm h}(\mathbf{k})}{b_{\rm hm}}.
$$

$$
\delta_h(\boldsymbol{x}) = b_1 \delta(\boldsymbol{x}) + \frac{1}{2} b_2 [\delta(\boldsymbol{x})^2 - \sigma_2] + \frac{1}{2} b_{s2} [s(\boldsymbol{x})^2 - \langle s^2 \rangle] + \text{higher order terms}.
$$

The challenge in reconstructing the density field

1) Galaxies bias:

- Biased tracers of the underlying mass distribution
- Exact form of the bias is complicated.
- Linear bias form used to reconstructing velocity field
- Linear bias: only valid for small density fluctuations motivated more by simplicity than by physical principles

2) Redshift space distortions

- Kaiser effect and FOG effect
- Causing modeling the bias parameters more complicated
- Iteration to make the RSD correction
- Linear theory limited in the high-density regions

$$
v(k) = H \; a \, f(\Omega) \, \frac{ik}{k^2} \; \frac{\delta_{\rm h}(k)}{b_{\rm hm}}.
$$

$$
\delta_h(\boldsymbol{x}) = b_1 \delta(\boldsymbol{x}) + \frac{1}{2} b_2 [\delta(\boldsymbol{x})^2 - \sigma_2] + \frac{1}{2} b_{s2} [s(\boldsymbol{x})^2 - \langle s^2 \rangle] + \text{higher order terms}.
$$

Deeping learning method: UNet model

- Provides a general model for image-to-image translation
- Apply to a wide variety of image generation tasks, including translating photography from day

to night and product sketches to photographs

Deeping learning method: UNet model

Encoder-decoder with skip connections:

1) Evolute the particles:

- cola_halo code: COmoving Lagrangian Acceleration (COLA) fast simulation
- Generate 30 simulations: 15 training, 5 validation, and 10 testing samples
- Planck2018 cosmology, $\Omega_m = 0.3111$, $\Omega_{\Lambda} = 0.6889$, $h = 0.6766$, $\sigma_8 = 0.812$.
- 512³ particles, 500Mpc/h
- Add RSD along the z-axis for halos. Keep real space for dark matter.

1) Evolute the particles:

- cola_halo code: COmoving Lagrangian Acceleration (COLA) fast simulation
- Generate 30 simulations: 15 training, 5 validation, and 10 testing samples
- Planck2018 cosmology, $\Omega_m = 0.3111$, $\Omega_{\Lambda} = 0.6889$, $h = 0.6766$, $\sigma_8 = 0.812$.
- 512³ particles, 500Mpc/h
- Add RSD along the z-axis for halos. Keep real space for dark matter.

2) Construct the density fields:

- CIC scheme, 256³ voxels,Top-hat smoothing with $R_s = 5 h^{-1}$ Mpc
- Halo mass weighting
- Rescaled the overdensity values to lie in the interval $[-1, 1]$

$$
s(x) = 2x/(x + a) - 1, \ \ a = 5
$$

Training process

- Run 1000 epochs: check both training and validating samples
- The differences between the prediction and the target keep less until epoch around epoch 600
- The performance would not be improved after epoch 600
- Save best model during epoch 700-1000 based on validate samples

Training process

- Run 1000 epochs: check both training and validating samples
- The differences between the prediction and the target keep less until epoch around epoch 600
- The performance would not be improved after epoch 600
- Save best model during epoch 700-1000 based on validate samples

1) Comparisons of the projected density

- 5 samples randomly selected from the 10 COLA test samples in a slice of 500 \times 500 \times 9.76 h ⁻¹Mpc
- The reconstruction exhibit recognizable, large-scale structures including clusters, filaments, and voids
- The reconstruction is generally very successful over the different scales
- Differ slightly from the target at regions around clusters.

Truths

UNet predictions

- 2) Density-density relation (left panel) and histogram distribution (right panel)
- No significant bias between δ_{rec} and δ_{true}
- 99.98% grids keeps accuracy $\Delta\delta/\delta < 5\%$
- Reason: small number of massive halos in currect trainng volume

- 2) Density-density relation (left panel) and histogram distribution (right panel)
- No significant bias between δ_{rec} and δ_{true}
- 99.98% grids keeps accuracy $\Delta\delta/\delta < 5\%$
- Reason: small number of massive halos in currect trainng volume

3) Monopole power spectrum

• Cross-correlation: P(k) ratios is 0.99 \pm 0.01, k < 0.1 h Mpc⁻¹ 1% reduction at $k = 0.1 h \text{ Mpc}^{-1}$ 10% reduction at $k = 0.3h$ Mpc⁻¹

4) 2D power spectrum

- UNet-reconstructed $P(k_{\perp}, k_{\parallel})$ is clearly more isotropic and perfectly round.
- Quadrupole $P_2(k)$ is very close to zero.
- The correction for the RSDs is overall very successful.

SZ-effect

X-ray

Simulation for CSST

- 标准宇宙学模型 (Planck2018)
- 分层互补,匹配分辨率和尺度需求
- 6144³ 粒子, 纯暗物质
- 已完成1Gpc/h
	- L-GADGET3 (李明)
	- 1万核, 28天 (14天模拟+14天后处理)
	- ~700万核时, 22TB+内存
	- 6.8TB/snapshot, 共900TB+ (Millennium: 2160^3, 500Mpc/h, mp=8x10^8, 34万核时, 25TB数据)
	- 完成初步测试和半解析星系建模

 \bigcirc

- 主模拟:九天
- 盒子大小:1000Mpc/h
- 粒子数:61443
- 计算:1万核,28天
- 内存:22TB+
- 存储:900TB+

训练数据:COLA 盒子大小:500Mpc/h 粒子数:5123 计算:28核,0.5小时 内存:<3GB 存储:10GB

主模拟:九天 盒子大小:1000Mpc/h 粒子数:61443 计算:1万核,28天 内存:22TB+ 存储:900TB+

训练数据:COLA 盒子大小:500Mpc/h 粒子数:5123 计算:28核,0.5小时 内存:<3GB 存储:10GB

主模拟:九天 盒子大小:1000Mpc/h 粒子数:61443 计算:1万核,28天 内存:22TB+ 存储:900TB+

Results: Jiutian simulation

• Reconstructing dark matter density field based on UNet

Results: Jiutian simulation

• Reconstructing dark matter density field based on UNet

COLA

- True sample mear

-- UNet prediction

 10^{1}

 $1+\delta$

 0.02% grids

Results: Jiutian simulation

• Reconstructing dark matter density field based on UNet

Application to ELUCID simulation

Check the impact of cosmology

• COLA and Jiutian simulations :

Planck2018 cosmology

 $\Omega_{\rm m}$ = 0.3111, Ω_{Λ} = 0.6889, h = 0.6766, $\Omega_{\rm b}$ = 0.049, σ_8 = 0.817.

Application to ELUCID simulation

Check the impact of cosmology

• COLA and Jiutian simulations :

Planck2018 cosmology

 $\Omega_{\rm m}$ = 0.3111, Ω_{Λ} = 0.6889, h = 0.6766, $\Omega_{\rm b}$ = 0.049, $\sigma_{\rm g}$ = 0.817.

ELUCID simulation (500Mpc/h, 3072³ particles):

WMAP5 cosmology

 $\Omega_{\rm m}$ = 0.258, Ω_{Λ} = 0.742, $\Omega_{\rm h}$ = 0.044, h = 0.72, σ_8 = 0.80

Results: ELUCID simulation

• No large distinction of the results between the WMAP5 and Planck18 cosmology

Reconstruct velocity field

VS.

Halo density field $\delta_h(k)$ with a bias b_{hm} $v(k) = H \; af(\Omega) \frac{ik}{k^2} \frac{\delta_{\rm h}(k)}{b_{\rm hm}}$

(Wang et al 2012, Shi et al 2016)

VS.

Reconstruct velocity field

$$
UNet-reconstructed δ(k)
$$

$$
v(k) = H \, af\left(Ω\right) \frac{ik}{k^2} \, δ(k)
$$

Halo density field $\delta_h(k)$ with a bias b_{hm}
 $v(k) = H af(\Omega) \frac{ik}{k^2} \frac{\delta_h(k)}{b_{hm}}$

(Wang et al 2012, Shi et al 2016)

Reconstruct velocity field

(Wang et al 2012, Shi et al 2016)

Velocity difference field

Velocity field

Reconstruct velocity field

UNet-reconstructed $\delta(k)$	Halo density field $\delta_h(k)$ with a bias b_{hm}		
$v(k) = H \, af(\Omega) \frac{ik}{k^2} \, \delta(k)$	VS.	Halo density field $\delta_h(k)$ with a bias b_{hm}	(Wang et al 2012, Shi et al 2016)

Slope Scatter Halo : 1.15 78.2 km/s UNet : 1.01 57.0 km/s

- Unbiased relation
- 21.1% scatter errror reduction

The three contours encompass 67%, 95%, and 99% of the grid cells

Testing: tidal field reconstruction

Reconstruct tidal field:

• Classification of the large-scale structure:

 $z[h^{-1}$ Mpc]

- cluster : yellow
- filament: yellow-green
- sheet: green
- void: black

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at $k = 0.1$ and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at $k = 0.1$ and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at $k = 0.1$ and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at $k = 0.1$ and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field