DarkAI: Reconstructing the large-scale density field of dark matter using AI

史峰 王梓同,杨小虎,李清洋 2023年4月22日 苏州

Reconstructing the mass distribution of the Universe

Well-understood

Initial conditions

Dark matter distribution

Dark matter halo

Galaxy distribution

Opportunity to reconstruct the underlying cosmic density field

Nbody simulations

us

Reconstructing the mass distribution of the Universe can provide

Velocity & Tidal field (Wang et al. 2012)

US

Reconstructing the mass distribution of the Universe can provide

Velocity & Tidal field (Wang et al. 2012)

Y Axis (Mpc/h)

• Initial density field (ELUCID, Wang et al 2016)

US

Reconstructing the mass distribution of the Universe can provide

Velocity & Tidal field (Wang et al. 2012)

• Initial density field (ELUCID, Wang et al 2016)

• Real-space dark matter power spectrum (Tegmark et al. 2004)

US

Reconstructing the mass distribution of the Universe can provide

Velocity & Tidal field (Wang et al. 2012)

• Initial density field (ELUCID, Wang et al 2016)

Galaxy formation

Cosmology

 Real-space dark matter power spectrum (Tegmark et al. 2004)

The challenge in reconstructing the density field

1) Galaxies bias:

- Biased tracers of the underlying mass distribution
- Exact form of the bias is complicated.
- Linear bias form used to reconstructing velocity field
- Linear bias: only valid for small density fluctuations motivated more by simplicity than by physical principles

$$\mathbf{v}(\mathbf{k}) = H \ a f(\Omega) \ \frac{i\mathbf{k}}{k^2} \ \frac{\delta_{\rm h}(\mathbf{k})}{b_{\rm hm}}.$$

$$\begin{split} \delta_h(\boldsymbol{x}) &= b_1 \delta(\boldsymbol{x}) + \frac{1}{2} b_2 [\delta(\boldsymbol{x})^2 - \sigma_2] + \frac{1}{2} b_{s2} [s(\boldsymbol{x})^2 - \langle s^2 \rangle] \\ &+ \text{higher order terms} \,. \end{split}$$

The challenge in reconstructing the density field

1) Galaxies bias:

- Biased tracers of the underlying mass distribution
- Exact form of the bias is complicated.
- Linear bias form used to reconstructing velocity field
- Linear bias: only valid for small density fluctuations motivated more by simplicity than by physical principles

2) Redshift space distortions

- Kaiser effect and FOG effect
- Causing modeling the bias parameters more complicated
- Iteration to make the RSD correction
- Linear theory limited in the high-density regions

$$\mathbf{v}(\mathbf{k}) = H \ a f(\Omega) \ \frac{i\mathbf{k}}{k^2} \ \frac{\delta_{\rm h}(\mathbf{k})}{b_{\rm hm}}.$$

$$\begin{split} \delta_h(\boldsymbol{x}) &= b_1 \delta(\boldsymbol{x}) + \frac{1}{2} b_2 [\delta(\boldsymbol{x})^2 - \sigma_2] + \frac{1}{2} b_{s2} [s(\boldsymbol{x})^2 - \langle s^2 \rangle] \\ &+ \text{higher order terms} \,. \end{split}$$

Deeping learning method: UNet model

- Provides a general model for image-to-image translation
- Apply to a wide variety of image generation tasks, including translating photography from day

to night and product sketches to photographs

Deeping learning method: UNet model

Encoder-decoder with skip connections:

1) Evolute the particles:

- cola_halo code: COmoving Lagrangian Acceleration (COLA) fast simulation
- Generate 30 simulations: 15 training, 5 validation, and 10 testing samples
- Planck2018 cosmology, $\Omega_{\rm m}$ = 0.3111, Ω_{Λ} = 0.6889, h = 0.6766, $\sigma_{\rm 8}$ = 0.812.
- 512³ particles, 500Mpc/h
- Add RSD along the z-axis for halos. Keep real space for dark matter.

1) Evolute the particles:

- cola_halo code: COmoving Lagrangian Acceleration (COLA) fast simulation
- Generate 30 simulations: 15 training, 5 validation, and 10 testing samples
- Planck2018 cosmology, $\Omega_{\rm m}$ = 0.3111, Ω_{Λ} = 0.6889, h = 0.6766, $\sigma_{\rm 8}$ = 0.812.
- 512³ particles, 500Mpc/h
- Add RSD along the z-axis for halos. Keep real space for dark matter.

2) Construct the density fields:

- CIC scheme, 256³ voxels, Top-hat smoothing with $R_s = 5 h^{-1}$ Mpc
- Halo mass weighting
- Rescaled the overdensity values to lie in the interval [-1, 1]

$$s(x) = 2x/(x + a) - 1$$
, a=5

Training process

- Run 1000 epochs: check both training and validating samples
- The differences between the prediction and the target keep less until epoch around epoch 600
- The performance would not be improved after epoch 600
- Save best model during epoch 700-1000 based on validate samples

Training process

- Run 1000 epochs: check both training and validating samples
- The differences between the prediction and the target keep less until epoch around epoch 600
- The performance would not be improved after epoch 600
- Save best model during epoch 700-1000 based on validate samples

UNet

Testing: COLA samples

1) Comparisons of the projected density

- 5 samples randomly selected from the 10 COLA test samples in a slice of 500 imes 500 imes 9.76 h^{-1} Mpc
- The reconstruction exhibit recognizable, large-scale structures including clusters, filaments, and voids
- The reconstruction is generally very successful over the different scales
- Differ slightly from the target at regions around clusters.

- 2) Density-density relation (left panel) and histogram distribution (right panel)
- No significant bias between δ_{rec} and δ_{true}
- 99.98% grids keeps accuracy $\Delta\delta/\delta < 5\%$
- Reason: small number of massive halos in currect trainng volume

- 2) Density-density relation (left panel) and histogram distribution (right panel)
- No significant bias between δ_{rec} and δ_{true}
- 99.98% grids keeps accuracy $\Delta\delta/\delta < 5\%$
- Reason: small number of massive halos in currect trainng volume

3) Monopole power spectrum

Cross-correlation:
P(k) ratios is 0.99 ± 0.01, k < 0.1 h Mpc⁻¹
1% reduction at k = 0.1 h Mpc⁻¹
10% reduction at k = 0.3h Mpc⁻¹

4) 2D power spectrum

- UNet-reconstructed P (k_{\perp} , k_{\parallel}) is clearly more isotropic and perfectly round.
- Quadrupole $P_2(k)$ is very close to zero.
- The correction for the RSDs is overall very successful.

SZ-effect

X-rav

Simulation for CSST

- 标准宇宙学模型 (Planck2018)
- 分层互补,匹配分辨率和尺度需求
- 6144³ 粒子,纯暗物质
- 已完成1Gpc/h
 - L-GADGET3 (李明)
 - 1万核, 28天 (14天模拟+14天后处理) ~700万核时, 22TB+内存
 - 6.8TB/snapshot, 共900TB+ (Millennium: 2160^3, 500Mpc/h,
 - mp=8x10^8,34万核时,25TB数据)
 - 完成初步测试和半解析星系建模

- 主模拟:九天
- 盒子大小: 1000Mpc/h
- 粒子数: 6144³
- 计算: 1万核, 28天
- 内存: 22TB+
- 存储: 900TB+

训练数据: COLA 盒子大小: 500Mpc/h 粒子数: 512³ 计算: 28核, 0.5小时 内存: <3GB 存储: 10GB

主模拟: 九天 盒子大小: 1000Mpc/h 粒子数: 6144³ 计算: 1万核, 28天 内存: 22TB+ 存储: 900TB+

训练数据: COLA 盒子大小: 500Mpc/h 粒子数: 512³ 计算: 28核, 0.5小时 内存: <3GB 存储: 10GB

主模拟:九天 盒子大小:1000Mpc/h 粒子数:6144³ 计算:1万核,28天 内存:22TB+ 存储:900TB+

to MUNIVERSIT

Results: Jiutian simulation

• Reconstructing dark matter density field based on UNet

Results: Jiutian simulation

• Reconstructing dark matter density field based on UNet

Results: Jiutian simulation

• Reconstructing dark matter density field based on UNet

Application to ELUCID simulation

Check the impact of cosmology

• COLA and Jiutian simulations :

Planck2018 cosmology

 $Ω_{\rm m}$ = 0.3111, $Ω_{\Lambda}$ = 0.6889, *h* = 0.6766 , $Ω_{\rm b}$ = 0.049, $σ_8$ = 0.817.

Application to ELUCID simulation

Check the impact of cosmology

• COLA and Jiutian simulations :

Planck2018 cosmology

 $Ω_{\rm m}$ = 0.3111, $Ω_{\Lambda}$ = 0.6889, *h* = 0.6766 , $Ω_{\rm b}$ = 0.049, $σ_8$ = 0.817.

• ELUCID simulation (500Mpc/h, 3072³ particles):

WMAP5 cosmology

 $Ω_{\rm m}$ = 0.258, $Ω_{\Lambda}$ = 0.742, $Ω_{\rm b}$ = 0.044, h = 0.72, $σ_{\rm 8}$ = 0.80

Results: ELUCID simulation

• No large distinction of the results between the WMAP5 and Planck18 cosmology

Testing: velocity field reconstruction

Reconstruct velocity field

VS.

Halo density field $\delta_{\rm h}(\mathbf{k})$ with a bias $b_{\rm hm}$ $\mathbf{v}(\mathbf{k}) = H \ a \ f(\Omega) \ \frac{i\mathbf{k}}{k^2} \ \frac{\delta_{\rm h}(\mathbf{k})}{b_{\rm hm}}$

(Wang et al 2012, Shi et al 2016)

Testing: velocity field reconstruction

VS.

Reconstruct velocity field

UNet-reconstructed
$$\delta(\mathbf{k})$$

 $\mathbf{v}(\mathbf{k}) = H \ a \ f(\Omega) \ \frac{i\mathbf{k}}{k^2} \ \delta(\mathbf{k})$

Halo density field $\delta_{\rm h}(\mathbf{k})$ with a bias $b_{\rm hm}$ $\mathbf{v}(\mathbf{k}) = H \ a f(\Omega) \ \frac{i\mathbf{k}}{k^2} \ \frac{\delta_{\rm h}(\mathbf{k})}{b_{\rm hm}}$

(Wang et al 2012, Shi et al 2016)

Velocity field

Testing: velocity field reconstruction

Reconstruct velocity field

(Wang et al 2012, Shi et al 2016)

Halo-based with linear bias

Testing: velocity field reconstruction

Reconstruct velocity field

 Slope
 Scatter

 Halo :
 1.15
 78.2 km/s

 UNet :
 1.01
 57.0 km/s

- Unbiased relation
- 21.1% scatter errror reduction

The three contours encompass 67%, 95%, and 99% of the grid cells

Testing: tidal field reconstruction

Reconstruct tidal field:

• Classification of the large-scale structure:

- cluster : yellow
- filament: yellow-green
- sheet: green
- void: black

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at k = 0.1 and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at k = 0.1 and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at k = 0.1 and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field

1) Method: Reconstruct the cosmic density field from the redshift-space halo feild based on Unet

2) Testing:

- Three simulations: COLA, Jiutian and ELUCID
- Statistics: projected density, density-density relation, historgram, 1D & 2D P(k)
- Fields: denstiy, velocity and tidal fields

- Accurate reconstruction with only 1% and 10% reduction of the cross P(k) at k = 0.1 and 0.3 h Mpc⁻¹
- RSD corrected successfully
- Low-resolution-COLA-trained network generalizes to the typical high-resolution N-body simulation
- UNet-based field outperforms the traditional method in accurately recovering the velocity & tidal field