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Era of Precision Cosmology

We try to reconstruct and understand the dynamics of the universe and

using various measurements and statistical
techniques. Phenomenological and then theoretical works can follow to
place

Baryon density
Initial Conditions:

Form of the Primordial
Spectrum and Model of
Inflation and its Parameters

Dark Matter:

Dark Energy:

density, model Epoch of reionization
and parameters

Hubble Parameter and
the Rate of Expansion




What do we do?

There are various , parametric
and non-parametric.

There have been many and
models proposed (recently, to alleviate
tensions).

Reconstruction = Phenomenology - Theory

There have been continuous attempts looking for
In various data.

These models/reconstructions can be very different.
How do we compare them?



Consistency of a proposed model and the data:

Frequentist Approach:

Assuming a proposed model, the probability of
the observed data must not be insignificant. Best
Is to do large number of careful simulations
based on a well defined covariance error-matrix.

Bayesian Approach:

Priors and simplicity of the proposed model also
matters (in model comparison)

Chi square analysis plays a crucial role in
calculation of the In both approaches



Why things are more

ot Likelihood

We are interested to calculate the probability of the
observed data given the model.

When data is
uncorrelated

X




What if the exact form of the error
matrix is not known?
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e.g. The case of Type la
supernovae




This can still happen!

Bl Best-fit x? Dist. - Mock Data
—— Best-fit x2 - Real Data
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This can still happen!

Bl Best-fit x? Dist. - Mock Data

—— Best-fit x? - Real Data
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Likelihood and Model Fitting

When number of data points is more than ~30 one can use relative chi
square for likelihood analysis and N, number of free parameters of the
fitting function, will become the degrees of freedom.
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Bayesian Analysis

« Bayesian approach provides the means to
Incorporate knowledge in data analysis.

« Bayes’s law states that the
IS proportional to the product of the

and the



Posterior probability and the priors:

Likelihood

Prior probabilit
A . :

o \

Posterior probability
Normalization factor

Model fitting has Bayesian essence since



Bayesian Evidence and
Model Selection

« Bayesian evidence: Integral of (likelihood)x(prior) over
the parameter space: Z = [ L(6)m(0)d0

« Bayes factor: Ratio of the evidence of the two models:
AlogZ = logZ(M;) — logZ(M,)

Supports Model 1 over Model 2 when AlogZ have a positive value

Jeffreys scale Z; /Z;  Kass-Rafferty scale Z; /Z; Interpretation

1t03.2 1to3 Not worth mentioning
321010 31020 Positive
10 to 100 20 to 150 Strong

> 100 >150 Very Strong
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(Present)

Standard Model of Cosmology

Universe is Flat Let’s solve Hubble tension
; . ? . . '
Universe is Isotropic with evolving DE!

Universe is Homogeneous

Power-Law primordial spectrum (n_s=const)
Dark Matter is cold
All within framework of FLRW



Phenomenologically Emergent Dark Energy
( PEDE)

No Dark Energy in the past and it acts as
an emergent phenomena:

Allows lower rate of expansion in the past
and higher rate of expansion at late times

Qpe(2) = Qpee x [1 — tanh (log,,(1 + 2))]

1 y 1 — tanh? log,o(1 + 2)]

3In10 = 1 — tanh [log,, (1 + 2)] =%

e (1 + tanh [log,, (1 + 2)]) — 1.

Li and Shafieloo, ApJ Lett 2019




Generalized Emergent Dark Energy

5 _— tanh ( A x log;o($£) -Has one degree of
pB(2) = ODEOT Hnh (A X Toggo(1 + 20)) freedom for DE sector
R S A L Rl e} )Rl - CDM and PEDE are
both included at special
— slomcom limits

—— A =1 (PEDE)
A=10

Li and Shafieloo, ApJ 2020
(arXiv:2001.05103)



Generalized Emergent Dark Energy
(GEDE)

Planck 2018 Eul vsi .
Planck 2018+BAO ull analysis using

Planck 2018+-R19 various combination of

Planck 20184+BAO+R19 : the data
Planck 2018+JLA
Planck 2018+Pantheon :
Planck 2018+BAO+JLA+R19 6.1
Planck 20184+BAO+Pantheon+R19 ,

Alog Z | Evidence against My

Negligible

Positive
Strong
Very strong

Model Comparison:
Bayesian evidence analysis in strong support of
emergent dark energy

W. Yang, et al, PRD 2021 [arXiv:2103.03815]



Generalized Emergent Dark Energy
(GEDE)

Planck 2018 Eul vsi .
Planck 20184+BAO ull analysis using

Planck 2018+-R19 various combination of

Planck 20184+BAO+R19 : the data
Planck 2018+JLA
Planck 2018+Pantheon
Planck 20184+BAO+JLA+R19 :
Planck 20184+BAO+Pantheon+R19| 5.8

Current tensions allow
us to find models

statistically better (?
han LCDM but are all

ensions resolved?

Model Comparison:
Bayesian evidence analysis in strong support of
emergent dark energy

Z =k | =
=

True for any successful evolving DE model!
W. Yang,et al, PRD 2021 [arXiv:2103.03815]



Distribution of Bayesian
Evidence:

 Be cautious about
Jeffery’s scale!

Distribution of Bayes factors can greatly

depend on the models and the data!

: ACDM, Models: ACDM-TDE
: ACDM, Models: ACDM-PEDE
: ACDM, Mode EDE-TDE
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ABSTRACT

We look at the di

The ratios of Bayesian evidences of different models are often used to perform model s

e then interpreted using scales such as the Jeffreys or Kass & Raftery scale. Firs
how well a model fits the data, regardless of how well other models perform.
bution of evidences that result when the

, we demonstrate how to use the

factors
evidence itself to validate the moy
The basic idea is that if, for some real dataset a model’s evidence lies outside the distri
fiducial model that generates the datasets is used for the analysis, then the model in question is robustly ruled out. Further,

ss the significance of a hypothetically computed Bayes factor. We show that the range of the distribution

set. Thus, we have



Bayes Factor:

Y B e Ca u ti O u S a b O u t Jeffreys scale Z;/Z;  Kass-Rafferty scale Z; /Z; Interpretation
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Keeley and Shafieloo, MNRAS 2022

See also:
Starkman et al, arXiv:0811.2415

Data with OK quality Data with worse quality Jenkins & Peacock, MNRAS 2011;
Nesseris & Garcia-Bellido, JCAP 2013;

Joachimi et al., A&A 2021,




Model Validation

Bayesian evidence approach is solid but only can
find the better model among the candidates (or less

wrong model/ranking models)

AlogZ >3 PEDE consistent PEDE ruled-out

ACDM consistent 6 994
ACDM ruled-out 0 o

AlogZ > 5 PEDE consistent PEDE ruled-out

ACDM consistent 89 911
ACDM ruled-out 0 0

Conventional Bayesian
Evidence Approach

Both models
are wrong!

—->When true model is unknown,
finding a statistical anchor is not
YEL

—>One can attempt using reliable
non-parametric reconstructions

Koo, Keeley, Shafieloo, L'Huillier, JCAP 2022



Ilterative Smoothing Method

- The non-parametric method to reconstruct the distance modulus and expansion

history of the universe
Shafieloo et al. 2006, 2018; Shafieloo. 2007; Shafieloo & Clarkson 2010

- Starts from initial guess of distance modulus, but generates model-independent
reconstruction of distance modulus with lower y? value after numerous iterations

) ) Su,T-CLW(2) ) .
Un+1(2) = up(2) + oW (C: Covariance matrix of the data)

1+z
)

17 = (1,,1),W(2) = exp (—

),sunh = u; — Un(z;) (A: Smoothing width)

szl = 8ﬂnT -ct. éun

- Derive the likelihood distribution function P(Ax?) (for a large number of data

realizations), where Ax? = xZ,0oth — Xbest—fit» When the true model is

assumed
Koo et al. 2021, JCAP, 03, 034

- XZooth: X2 Of the converged reconstruction using smoothing method

. Xﬁest—ﬁt: Best-fit ¥? of the correct model fits the data



Testing Models based on Likelihood Distribution

. P(Ax?) have no dependence on the true
model and depends only on the covariance
matrix of the data

— One Ay? for given confidence (Ruler)
Koo et al. 2021, JCAP, 03, 034

- The model being tested is ruled out if the
Ax? value is lower than the ruler

- Likelihood distributions exclude both models
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and
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Model Validation

Bayesian evidence approach is solid but only can
find the better model among the candidates (or less
wrong model/ranking models)

One can design robust statistical approaches for
model validation

AlogZ >3 PEDE consistent PEDE ruled-out

ACDM consistent 6
ACDM ruled-out 0 0

95% CL PEDE consistent PEDE ruled-out

ACDM consistent 2 8
ACDM ruled-out 0 @.‘

AlogZ > 5 PEDE consistent PEDE ruled-out

ACDM consistent 89 911
ACDM ruled-out 0 o

99% CL PEDE consistent PEDE ruled-out

ACDM consistent 14 9
ACDM ruled-out 0 @

Conventional Bayesian lterative smoothing
Evidence Approach validation approach
Both models

Koo, Keeley, Shafieloo, L'Huillier,

are wrong! N



Ruling Out New Physics at Low Redshift as
a solution to the HO Tension

CMB
CMB+BAO+SN

— PEDE —_— Wo,W,;=-0.6,-2.0
= TDE —— DM-DE
— Wo,W5=-1.1,0.4 — MG

)
a
=
N
X
3
Q

A h(z)/ h(z)

Exploring an extensive physical space with Keeley and Shafieloo, Phys. Rev. Lett, 2023
Crossing functions for validation (Chebyshev
polynomials)



Ruling Out New Physics at Low Redshift as
a solution to the HO Tension

BN SN+BAO (Cheb)

I SN+BAO (ACDM)

B SHOES

B CMB (Cheb)

mm CMB (ACDM)

B CMB+BAO+SN (Cheb) \

Even in such extensive physical space,
inference on HO is not consistent with SHOES.

BN SN+BAO (Cheb)
BN SN+BAO (ACDM)
BN SHOES

B CMB (Cheb)

B CMB (ACDM)
RO ) Keeley and Shafieloo, Phys. Rev. Lett, 2023



Isn’t it suspicious that nothing works™?!

Even in such extensive physical space,
inference on HO is not consistent with SHOES.

BN SN+BAO (Cheb)
N SN+BAO (ACDM)

W SHOES Validation of a large number of models can

B CMB (Cheb)

mmm CMB (ACDM) hints towards Systematic

B CMB+SN+BAO (Cheb)



(Present) Lets talk about tensions again...

o

o

o

Standard Model of Cosmology

niverse is Flat On Importance of non-

niverse is Isotropic Prgilie
reconstruction

niverse is Homogeneous

Dark Energy is Lambda (w=-1)

Power-Law primordial spectrum (n_s=const)
Dark Matter is cold When we don’t know
All within framework of FLRW

what to look for!



Let’s Reconstruction Leads the way!

Model Independent Reconstruction of Primordial Spectrum

Bridle et al, MNRAS 2003

0 0.02 0.04 0.06 0.08 _4 01
k/Mpc

Figure 4. Reconstruction of the shape of the primordial power spectrum in 16 bands
baryon and dark matter densities, and the redshift of reionization.
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Beyond Power-Law: there are some other

models consistent to the data.

1e-08 7000
Starobinsky model best fit 2000 Planck low-1+
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Individual likelihoods comparison

Fy(k)

Hazra, Shafieloo, Smoot, JCAP 2013

Beyond Power-Law:

there are some other
models consistent to
the data.

Hazra, Shafieloo, Smoot, Starobinsky, JCAP 2014A
Hazra, Shafieloo, Smoot, Starobinsky, JCAP 2014B
Hazra, Shafieloo, Smoot, Starobinsky, Phys. Rev. Lett 2014

Hazra, Shafieloo, Smoot, Starobinsky, JCAP 2016
Hazra et al, JCAP 2018

Debono, Hazra, Shafieloo, Smoot, Starobinsky, MNRAS 2020
Hazra, Paoletti, Debono, Shafieloo, Smoot, Starobinsky, JCAP

Individual Baseline WWl-a WWI-b WWl-c WWI-d Wwr'
likelihood ADOF =4 ADOF‘ =4 ADOF =4 ADOF =4 ADOF =i
d i 761.1 762 761.9 762.8 762.8 762.4
lowT 154 8.2 134 12.1 13 10.2
Total 778.1 772.1 (-6) 777 (-1.1) 777 (-1.1) 778.4 (0.3) 775 (-3.1)
EE 751.2 T48.8 747.2 T48.6 750.2 746.8
lowTEB 10493.6 10490 10495.6 10492.4 10495.7 10492.2
Total 11248.8 | 11241.8 (-7) 11246.2 (-2.6) | 11244.5 (-4.3) | 11249.3 (0.5) 11242.3 (-6.5)
TTTEEE 2431.7 2432.7 2422.6 2427.8 2421.7 2426.5
lowTEB 10497 10490.8 10495.1 10493.4 10495.3 10492.7
Total 12935.6 | 12929.5 (-6.1) | 12924.2 (-11.4) | 12927.6 (-8) | 12923.4 (-12.2) | 12925.2 (-10.4)
d Ik T64.5 763.6 762.2 764.4 762.9 762.8
EE 753.9 T54.8 750.5 750.8 750.8 751
TE 932 933.4 928.7 929.2 927 928.8
lowTEB 10498.4 10490.4 10495.8 10493.7 10495.6 10492.4
BKP 41.6 42 42 42.6 41.8 42.9
Total 12997 12991 (-6) 12985.9 (-11.1) | 12987.2 (-9.8) 12985 (-12) 12985.1 (-11.9)
TTTEEE 2431.7 2432.8 24214 2426.7 2421 2425.7
lowTEB 10498.5 10490.5 10495.5 10493.6 10495.8 10492.6
BKP 41.6 42 42.7 42 41.9 42.5
Total 12978.3 | 12971.3 (-7) 12967.3 (-11) | 12968.6 (-9.7) | 12965 (-13.3) 12968.6 (-9.7)
TT (binl) 8402.1 8404.1 8403.9 8405.2 8402.1 8401.9
lowT 154 8.3 13.3 11.9 13.2 10.3
Total 8419.6 | 8414.7 (-4.9) 8419.5 (-0.1) 8419.8 (0.2) 8418.1 (-1.5) 8414.4 (-5.2)
TTTEEE (binl) | 24158.2 24158.6 24149 24155 241484 24151.5
lowTEB 10497.6 10490.3 10493.4 10493.6 10495.3 10492.7
Total 34661.9 | 34655.3 (-6.6) | 34650.5 (-11.4) | 34654.4 (-7.5) | 34649.5 (-12.4) | 34650.6 (-11.3)
2021
Power law PP Power law PPS
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Forms of PPS and Effects on the
Background Cosmology

Flat Lambda Cold Dark Matter Universe (LCDM)
with power—law form of the primordial spectrum

It has 6 main parameters. (

° G(lk) —

<7

P(k) = A ]

o

S




Forms of PPS and Effects on the
Background Cosmology

« Cosmological parameter estimation with free form
primordial power spectrum

3 1
«— G(l,k) <
2
3
4
_—> P(k)

2




Power law PPS
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Background
Cosmological
Parameters and PPS

We use the reconstructed PPS
for parameter estimation,
similar to what we do with PL.

Planck2015
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One spectrum to cure them all: looking for

signature from early Universe to solve major

anomalies and tensions in cosmolog

= Standard Model (Power law)

=== Reconstruction

Reconstruction
Reconstruction + Aju,
Standard Model
Standard Model + A

Standard Mode!
Standard Model + Q;

—0.150-0.125—-0.100—-0.075—-0.050—0.025 0.000 0.025 1169 1176 1183 1190 1197 1204 1211
Qx Xeue

Hazra, Antony, Shafieloo : JCAP 2022
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Alens
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2
Xcme

Reconstructio
Reconstructigh X Q

Standard Mpde

Standard Model +\Q2,




One spectrum to cure them all: Signature from

early Universe solves major anomalies and
tensions in cosmoloc

Recons truction + Ajps + Qp
Standard Model + Ajens + Q%

01 0.2 03 04 05 0.6 0.7 0.8 064 072 080 088 09 104 112 120
Qm Ss

Addressing Majour
Anomalies and tensions

—0.30 —0.25 —0.20 —0.15 —0.10 —0.05 0.00 0.05

Qx

Hazra, Antony, Shafieloo :JCAP 2022 NOW we know What to |00k fOl"

Reconstruction 2> Phenomenology -



Current Status

Open problem. Many tensions and hints for various
systematics

Many theoretical/phenomenological models are
proposed to ease the tensions. None is convincing so
far (none can pass all validation tests).

Not possible to resolve all problems with minimal
modification of the standard model.

Model independent consistency test between
various data is essential to rule out systematics.



Looking for systematics

Model independent consistency test between various
data is essential to rule out systematics.

Consistency of SDSS BAO and Pantheon
SN la data

Keeley, Shafieloo, Zhao,..., MNRAS 2021
[arXiv:2010.03234] [SDSS |V paper]

HOrd = 10040 = 140 km/s and
Qk =0.02 = 0.20
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High possibilities for systematics in different data

Need for independent measurements

Power-Law Primordial Power Spectrum?
Lambda Dark Energy?



Tip of the Red Giant Branch Future

Perspective

Hubble Constant Over Time

Cepheids

TRGB Freedman et al,
oMy arXiv:1907.05922

2012 2016 2020
Year of Publication

Figure 17. A plot of Hy values as a function of time. The points and shaded region
in black are those determined from measurements of the CMB; those in blue are Cepheid
calibrations of the local value of Hy; and the red points are TRGB calibrations. The red
star is the best-fit value obtained in this paper. Error bars are 1o.

CMB and Independent Local Hy values
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Figure 18. Completely independent calibrations of Hp. Shown in red is the probability
density function based on our LMC CCHP TRGB calibration of CSP-I SNe Ia; in blue is
the Cepheid calibration of Hp (R et 016), using the Milky Way parallaxes and the
maser distance to NGC 4258 as anch excluding the LMC). The Planck value of Hp is
shown in black.




Cosmology with Strong Lens Systems: Has become already competative!

flat sN+sL
flat ACDM-SL only

non-flat gNn+SL

non-flat ACON-SL only HO from Strongly
Lensed systems

HOLiCOW

Hy = 72.8%15 km/s/Mpc

Liao, Shafieloo, Keeley, Linder, ApJ Letters 2020

Liao, Shafieloo, Keeley, Linder, ApJ Letters 2019

HOLICOW |. HO Lenses in

Order Name
COSMOGRAIL's Wellspring r R:-e:l.11131-1231

HE 0435-1223

B16084-656 :
Suyu et al. MNRAS 2017 ; SDSS 120644332 0.745




Future perspective (late universe, SN la)

The Future of SN la Cosmology at a Glance

Low-z [Z<0.1]  Discovery + Imaging: >300,000 photometric, 6,000 spectroscopic from

: SDSS, SNLS, PS1, DES, LSST, WFIRST
* Discovery: ~2000/yr from ASASSN, PS, ATLAS, ZTF, LSST « Spectroscopic Follow-up: multi-object spec. on 4-8m telescopes
 Imaging Follow-up: 1500 SN - Foundation, full LSST/ZTF

100000 » Spectroscopic Follow-up: (on 2m telescopes) High-z [Z>1]
Confirmation: single-object spectroscopy

WL ; ¢ Discovery + Imaging: ~6,000 photometric, 1,000 spectroscopic
Twinning: integral field spectroscopy

from HST, JWST, WFIRST
_ . . e Spectroscopic Follow-up: JWST, WFIRST, 8m+, ELTs
10080 Boxes: Total anticipated discoveries p 3 2
across each redshift range

1000 Points: Expected classifications
with spec. follow-up (shown
approximately at median z)

Constraints on w(z) from
the SNIa Hubble diagram

Total Number of SN

100 Top Systematics for measuring w:
¢ Calibration across wavelength range
¢ Intrinsic scatter, Population Drifts
10 ¢ Classification
1

os via Weak Lensing
« Limited by max redshift of survey
« Signal goes with ~0.05z
» Top systematics: population drift,
selection effects

=

Other / / 0.01 \ . J—

Avenues:

Local Ho fos via Peculiar Velocities B
ki e T Additional avenues
¢ Limited by low-z SNla Rate * Limited by SNIa Rate and intrinsic include isotropy tests
 ~1 SN/ yr in distance-calibrated galaxy at z<0.01  dispersion of SN luminosity (0.08  « |imited by lensed SN discovery rates and follow-up and galaxy survey
* Top systematics: cross-matching cepheid and twin/NIR, -0.15 optical mag) ¢ Dedicated follow-up necessary canblaone
Hubble flow host galaxy properties * Top systematics: MW extinction * Top systematics: microlensing, lens model systematics

Scolnic,et al, arXiv:1903.05128




Future perspective (late universe; BAO & RSD)

BOss %, eBOSS
DESI 14k o—e HETDEX
DESI 9k —e® Fuclid 50m
DESI BGS 14k WFIRST-2.4
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Aghamousa et al, [arXiv:1611.00036]
DESI Collaboration | ®® Redshiftz |




Future perspective (late universe; BAO, RSD)

DESI Y1 data will be released soon

and it will be better than all existing
LSS data combined

2 0.0 05 1.0 1.5 2.0 2.5 3.0 3.5
Z

arXiv:2306.06307 DESI SV
IR o Xiv:2306.06308 DESI EDR

Aghamousa et al,
[arXiv:1611.00036] DESI
Collaboration


https://arxiv.org/abs/2306.06307
https://arxiv.org/abs/2306.06307

Future perspective [G-Waves and Standard Sirens]

Astro2020

Figure 1: Hubble constant un-
b —s0pe | certainty (lo) as a function of
p. =100 Mpe | combined GW events with associ-
D.=200Mpe | ated EM counterpart. The shaded
Photo= regions show the impact of the
peculiar velocity uncertainty be-
tween 100 and 400 kms~! for

SHOES i i
HOES different distance reaches D,.

Planck E— The latest results from standard
candles (SHOES, [13]) and CMB
(Planck, [14]) are also shown.

100

Palmese et al,
arXiv:1903.04730



Future
Perspective
(primordial)

Full picture

Searching for
correlations!

Complete reconstruction analysis
with polarization data

G, (k),G" (k),G,” (k),G," (k)

Post recombination Radiative

Primordial power spectra  transport kernels in a given
from Early universe cosmology



Features with Future of CMB (S4)

With Cosmic Origins Explorer (CORE)-like survey specification

Suppression
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Di Valentino et al,
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Hazra et al, JCAP 2018
Debono et al, MNRAS 2020
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Future
Perspective

From 2D to 3D

Using LSS data to test early universe scenarios

1.

We need to estimate matter power spectrum but we observe galaxies.
Hence we have to model linear clustering bias and estimate its parameters
accurately and precisely to connect the observables to theory. Bias
modeling would be different for different surveys and susceptible to
systematics.

Does power spectrum (or bi-spectrum, etc) necessarily contains all the
information in 3D data of LSS? Can’t reducing dimensionality of the data
wash out some information?



Data will be hugely better...but we have to be careful!

Cosmology vs Systematics

» With higher quality of the data the role of

systematics will become more and more
prominent.

* Higher precision may cost us
uncontrollable bias if we make wrong
assumptions.



Conclusion

Many statistical tools are not used appropriately in cosmology and
astrophysics and results can be

HO tension (and some others) seems remaining persistent in the context of
the LCDM model. This can open ways for competitive alternatives (GEDE?,
EDE, features in PPS?) but

Tensions are not resolved with minimal extensions of the standard
model and there is no clear resolution. It is highly possible, from statistical
point of view, that there are in some of the data and we might
need new physics too. It can be a combination of both! New independent
measurements and observations can help to clear things up.

With higher quality data, the
are much more prominent in introducing . Thisis a
real challenge to avoid making big fake discoveries.



Conclusion

Standard Model of Cosmology fits different data pretty well individually but
there are tensions fitting different combinations of the data.

HO tension (and some others) seems remaining persistent in the context of
the LCDM model. This can open ways for

Tensions are not resolved with minimal extensions of the standard
model and there is no low redshift resolution. It is highly possible that
there are in some of the data and we might need new physics
too. It can be a combination of both! New independent measurements and
observations can help to clear things up.

First target can be testing different aspects of the standard model. If it is not
‘Lambda’ dark energy or ‘power-law’ primordial spectrum then we can
look further. It is possible to focus the power of the data for the purpose of
the falsification. Next generation of astronomical observations, (DESI,
Euclid, LSST, WFIRST, SKA(?), etc) will make it much more clear about the
status of the concordance model in 2020s.



