application of constrained simulations in understanding the galaxy-halo connection: the case for halo assembly bias

Yen-Ting Lin *ASIAA*

Hironao Miyatake, Hong Guo, Yi-Kuan Chiang, Kai-Feng Chen, Ting-Wen Lan, Yu-Yen Chang *with special thanks to* Huiyuan Wang, Xiaohu Yang, & Houjun Mo

- dark matter halos biased tracers of matter, with bias primarily as a function of halo mass \Rightarrow more massive halos are more biased
- a secondary effect is *assembly bias*: bias also depends on the halo formation time
	- for low mass halos (~ $IQ^{12}h^{-1}M_Q$), those that form earlier would cluster more strongly (having ~40% larger bias)
	- for cluster-scale halos, youngest halos are -10% more biased than oldest ones
Gao+05, Jing+07, Bhattacharya+11

- dark matter halos biased tracers of matter, with bias primarily as a function of halo mass \Rightarrow more massive halos are more biased
- a secondary effect is *assembly bias*: bias also depends on the halo formation time
	- for low mass halos (~ $IQ^{12}h^{-1}M_Q$), those that form earlier would cluster more strongly (having ~40% larger bias)

200

for cluster-scale halos, youngest halos are -10% more biased than oldest ones Gao+05, Jing+07, Bhattacharya+11 5×10¹² 5×10¹² 5×10¹⁴*h*^{−1}*M*_⊙

- dark matter halos biased tracers of matter, with bias primarily as a function of halo mass \Rightarrow more massive halos are more biased
- a secondary effect is *assembly bias*: bias also depends on the halo formation time
	- for low mass halos (~ $IQ^{12}h^{-1}M_Q$), those that form earlier would cluster more strongly (having ~40% larger bias)
	- for cluster-scale halos, youngest halos are -10% more biased than oldest ones Gao+05, Jing+07, Bhattacharya+11 5×10¹² 5×10¹² 5×10¹⁴*h*^{−1}*M*_⊙

 Z_{form}

لسيبيت

 10^{2}

 $10³$

blue: 20% young

red: 20% old

 $10¹$

 M/M .

as assembly bias is a robust prediction/reature of $NCDW$ it is important to find observational evidence for it!! as assembly bias is a robust prediction/feature of ΛCDM

- a secondary effect is *assembly bias*: bias also depends on the halo formation time
	- for low mass halos (~ $IQ^{12}h^{-1}M_Q$), those that form earlier would cluster more strongly (having ~40% larger bias)
	- for cluster-scale halos, youngest halos are -10% more biased than oldest ones
Gao+05, Jing+07, Bhattacharya+11 5×10^{12} $5 \times 10^{14} h^{-1} M_{\odot}$

 Z_{form}

استنب استنب

 $10³$

 10^{2}

non-detection of assembly bias in Milky Way-like halos

- we have constructed a pair of early- and lateforming halos, selected by the star formation $\widehat{\circ}$ history (SFH) of the central galaxy
	- assuming SFH of central galaxy correlates well with the formation history of the halo
- masses are $(9\pm 2) \times 10^{11}$ h⁻¹M_o and $(8±2)\times10^{11}h^{-1}M_{\odot}$ early-to-late bias ratio squared
- theoretical expectation derived from Nbody simulations, taking into account uncertainties in halo mass distribution
	- log-normal form assumed
	- probable values of centroid & width allowed by measured lensing signal
- probability for theory to be consistent with observation is 5×10-⁵

non-detection of assembly bias in Milky Way-like halos

- we have constructed a pair of early- and lateforming halos, selected by the star formation $\widehat{\circ}$ history (SFH) of the central galaxy
	- assuming SFH of central galaxy correlates well with the formation history of the halo
- masses are $(9\pm 2) \times 10^{11}$ h⁻¹M_o and $(8±2)\times10^{11}h^{-1}M_{\odot}$ early-to-late bias ratio squared
- theoretical expectation derived from Nbody simulations, taking into account uncertainties in halo mass distribution
	- log-normal form assumed
	- probable values of centroid & width allowed by measured lensing signal
- probability for theory to be consistent with observation is 5×10-⁵

cation.

Elucid to the rescue

- hard-learned lesson: *reliable* proxy of halo formation time working on *individual* halo basis
- it would be a dream come true if we have the mass accretion history (MAH) of the clusters!
- using the group catalog of Yang et al. (2007), Wang et al. (2016) have run a constrained simulation of the local Universe (SDSS DR7, z<0.12) called *Elucid*

Wang+16

Elucid to the rescue

- hard-learned lesson: *reliable* proxy of halo formation time working on *individual* halo basis
- it would be a dream come true if we have the mass accretion history (MAH) of the clusters!
- using the group catalog of Yang et al. (2007), Wang et al. (2016) have run a constrained simulation of the local Universe (SDSS DR7, z<0.12) called *Elucid*
- for structures larger than -2 h⁻¹Mpc, there is very good correspondence between SDSS large scale structures and *Elucid* structures
- we have selected top -630 most massive clusters at z<0.12 from Yang's catalog
- MAH for each cluster is given by the counterpart halo in *Elucid*

result: Z_{20}

- clusters split by extrema in z_{20} *and* limited in mass and redshift: consider oldest and youngest clusters (138 oldest = z_{20} >1.35; 121 youngest = z_{20} <0.85) with $\log M_{200m}$ =14-14.5 and z=0.06-0.12
- lensing masses *consistent within 10*: $M_{200m,e} = (1.3\pm0.3)x$ 10¹⁴ h⁻¹ M_{\odot} ; $M_{200m,l}$ =(1.0±0.3) $x10^{14}$ h⁻¹ M_{\odot}
- large-scale clustering differs significantly ($p=IXIO⁻¹⁰$) even after accounting for differences in mass: *we have a strong detection!!!*

result: Z_{20}

- clusters split by extrema in z_{20} *and* limited in mass and redshift: consider oldest and youngest clusters (138 oldest = z_{20} >1.35; 121 youngest = z_{20} <0.85) with $\log M_{200m}$ =14-14.5 and z=0.06-0.12
- lensing masses *consistent within* $I\sigma$: $M_{200m,e}$ =(1.3±0.3) $xIO^{T4} h⁻¹M_o$; $M_{200m,l}$ =(1.0±0.3) $x10^{14}$ h⁻¹ M_{\odot}
- large-scale clustering differs significantly ($p=IXIO^{-10}$) even after accounting for differences in mass: *we have a strong detection!!!*

result: Z_{20}

- clusters split by extrema in z_{20} *and* limited in mass and redshift: consider oldest and youngest clusters (138 oldest = z_{20} >1.35; 121 youngest = z_{20} <0.85) with $\log M_{200m}$ =14-14.5 and z=0.06-0.12
- lensing masses *consistent within 10*: $M_{200m,e}$ =(1.3±0.3) x 10¹⁴ h⁻¹ M_{\odot} ; $M_{200m,l}$ =(1.0±0.3) $x10^{14}$ h⁻¹ M_{\odot}
- large-scale clustering differs significantly ($p=IXIO^{-10}$) even after accounting for differences in mass: *we have a strong detection!!!*

robustness of WL measurements?

- what if our WL mass measurements were off?
	- maybe the early-forming sample mass is biased high by 1σ , while that of late-forming sample is biased low l $(2.6\% \text{ chance}) \Rightarrow p = 7.$
	- *the late-forming sa* mass is biased low by chance) \Rightarrow p=2.4XIO⁻⁵
	- if we assume 10% und \sim nty in the Tinker+08 bias mass relation and arti decrease the expected the probabilities become 0.0053 and 0.0025 (ab) events) Lin+22

- using a cluster-galaxy cross-correlation technique, we derive surface density profiles of member galaxies of the two samples
	- concentrations of *red* galaxy distribution for the early- and late-forming clusters are $c_e = 7.1 \pm 1.7$ and $c_l = 5.6 \pm 0.6$

- using a cluster-galaxy cross-correlation technique, we derive surface density profiles of member galaxies of the two samples
	- concentrations of *red* galaxy distribution for the early- and late-forming clusters are $c_e = 7.1 \pm 1.7$ and $c_l = 5.6 \pm 0.6$

 $N_{\text{early}} \approx 0.75 N_{\text{late}}$

- using a cluster-galaxy cross-correlation technique, we derive surface density profiles of member galaxies of the two samples
	- concentrations of *red* galaxy distribution for the early- and late-forming clusters are $c_e = 7.1 \pm 1.7$ and $c_l = 5.6 \pm 0.6$

 $M_{200m,e}$ =(1.26±0.35) x 10¹⁴h⁻¹M_o $M_{200m,l}$ =(0.95±0.26)x10¹⁴h⁻¹M_o $N_{\text{early}} \approx 0.75 N_{\text{late}}$

- using a cluster-galaxy cross-correlation technique, we derive surface density profiles of member galaxies of the two samples
	- concentrations of *red* galaxy distribution for the early- and late-forming clusters are $c_e = 7.1 \pm 1.7$ and $c_l = 5.6 \pm 0.6$

 $M_{200m,e}$ =(1.26±0.35)x10¹⁴h⁻¹M_o $M_{200m,l}$ =(0.95±0.26)x10¹⁴h⁻¹M_o $N_{\text{early}} \approx 0.75 N_{\text{late}}$

 $N \propto M^{0.8}$

- using a cluster-galaxy cross-correlation technique, we derive surface density profiles of member galaxies of the two samples
	- concentrations of *red* galaxy distribution for the early- and late-forming clusters are $c_e = 7.1 \pm 1.7$ and $c_l = 5.6 \pm 0.6$

- using a cluster-galaxy cross-correlation technique, we derive surface density profiles of member galaxies of the two samples
	- concentrations of *red* galaxy distribution for the early- and late-forming clusters are $c_e = 7.1 \pm 1.7$ and $c_l = 5.6 \pm 0.6$
- no appreciable differences in mean age of brightest cluster galaxy (BCG) and other member galaxies are detected using full spectral or spectral energy distribution fitting methods
- median magnitude gap between BCG and G2 (2nd most luminous galaxy): Δ _e=0.44±0.01, Δ _l=0.38±0.01
	- between BCG and G4: Δ _e=0.99±0.01, Δ _l=0.87±0.01
- median offset of BCG from cluster center: $d_e = (0.11\pm0.01)r_{200m}$, $d = (0.14 \pm 0.01) r_{200m}$
- *all* of these are consistent with the notion that the early-forming sample is indeed older, allowing BCGs to settle to the center and accrete more masses via galactic cannibalism

null tests

- we have constructed 14 pairs of random cluster samples that have similar distribution in mass & z
	- 3 numbers in blue: masses of early- & late-analog clusters, p for w_p to be consistent with theory (red line)
	- none shows signals as strong as our samples
- mean BCG offset: $d_e = (0.20 \pm 0.01) r_{200m}$ $d = (0.22 \pm 0.01) r_{200m}$
- median magnitude gap: Δ _e=0.42±0.01, Δ _l=0.42±0.01

- are we measuring AB in the real world or only in *Elucid*?
- recast our study as a hypothesis test \Rightarrow ruling out the null hypothesis that *AB does not exist in the Universe*
- *P*(AB|data, Elucid) ∝ *P*(data |AB, Elucid)*P*(AB|Elucid)
	- $AB = "AB exists in the Universe"$
	- data \equiv properties of our cluster samples (WL, clustering, cluster galaxy properties)
	- prior $P(AB | Elucid) = 1$ or 0 (each 50%)

- *P*(AB|data, Elucid) ∝ *P*(data |AB, Elucid)*P*(AB|Elucid)
	- $AB = "AB exists in the Universe"$
	- data \equiv properties of our cluster samples (WL, clustering, cluster galaxy properties)
	- prior $P(AB | Elucid) = 1$ or 0 (each 50%)
	- likelihood $P(data | AB, Elucid)$ consists of 4 cases resulting from the combination of (1) whether AB exists in the Universe $\&$ (2) whether AB exists in $Elucid \Rightarrow$ comparing our observations with the predicted signals

- *P*(AB|data, Elucid) ∝ *P*(data |AB, Elucid)*P*(AB|Elucid)
	- $AB = "AB exists in the Universe"$
	- data \equiv properties of our cluster samples (WL, clustering, cluster galaxy properties)
	- prior $P(AB | Elucid) = 1$ or 0 (each 50%)
	- likelihood $P(data | AB, Elucid)$ consists of 4 cases resulting from the combination of (1) whether AB exists in the Universe $\&$ (2) whether AB exists in $Elucid \Rightarrow$ comparing our observations with the predicted signals

- *P*(AB|data, Elucid) ∝ *P*(data |AB, Elucid)*P*(AB|Elucid)
	- $AB = "AB exists in the Universe"$
	- data \equiv properties of our cluster samples (WL, clustering, cluster galaxy properties)
	- prior $P(AB | Elucid) = 1$ or 0 (each 50%)
	- likelihood $P(data | AB, Elucid)$ consists of 4 cases resulting from the combination of (1) whether AB exists in the Universe $\&$ (2) whether AB exists in $Elucid \Rightarrow$ comparing our observations with the predicted signals

AB exists in $Elucid \Rightarrow$ comparing our observations with the predicted signals

AB exists in $Elucid \Rightarrow$ comparing our observations with the predicted signals

• circularity: *Elucid* is built from the density field based on group and cluster catalog of Yang+07, so *Elucid* halos are expected to be in LSS similar to Yang+07 clusters \Rightarrow z_{20} only meaningful in *Elucid*

a Bayesian way of thinking about this

Observable	True AB	Observed trend	Spurious AB due to circularity	Spurious AB due to incorrect cluster mass
Concentration	$c_e > c_1$	$c_e > c_1$	$c_e = c_1$	$c_e \approx c_1$
Galaxy number	$N_e < N_1$	$N_e < N_1$	$N_{\rm e}=N_{\rm l}$	$N_e \le N_1$
BCG offset	$d_e < d_1$	$d_e < d_1$	$d_e = d_1$	$d_e > d_1$
Magnitude gap	$\Delta_e > \Delta_1$	$\Delta_e > \Delta_1$	$\Delta_{\rm e} = \Delta_{\rm l}$	$\Delta_e > \Delta_1$

- if cluster mass of our late-forming sample is severely underestimated
	- concentration varies very weakly with cluster mass $\Rightarrow c_e \approx c_1$
	- $N \propto M^{0.8}$ (but with large scatter) $\Rightarrow N_e \lesssim N_1$
	- BCG offset decreases with increasing cluster mass $\Rightarrow d_e > d_l$
	- mag gap is found to decrease with cluster mass $(\text{Lin}+ \text{IO}) \Rightarrow \Delta_e > \Delta_l$

a Bayesian way of thinking about this

- concentration varies very weakly with cluster $\frac{0.8}{0.8}$
- $N \propto M^{0.8}$ (but with large scatter) $\Rightarrow N_e \lesssim N_1$
- BCG offset decreases with increasing cluster mass $\Rightarrow d_e > d_l$
- mag gap is found to decrease with cluster mass $(\text{Lin}+ \text{IO}) \Rightarrow \Delta_e > \Delta_l$

a Bayesian way of thinking about this

Observable	True AB	Observed trend	Spurious AB due to circularity	Spurious AB due to incorrect cluster mass
Concentration	$c_e > c_1$	$c_e > c_1$	$c_e = c_1$	$c_e \approx c_1$
Galaxy number	$N_e < N_1$	$N_e < N_1$	$N_{\rm e}=N_{\rm l}$	$N_e \le N_1$
BCG offset	$d_e < d_1$	$d_e < d_1$	$d_e = d_1$	$d_e > d_1$
Magnitude gap	$\Delta_e > \Delta_1$	$\Delta_e > \Delta_1$	$\Delta_{\rm e} = \Delta_{\rm l}$	$\Delta_e > \Delta_1$

- if cluster mass of our late-forming sample is severely underestimated
	- concentration varies very weakly with cluster mass $\Rightarrow c_e \approx c_1$
	- $N \propto M^{0.8}$ (but with large scatter) $\Rightarrow N_e \lesssim N_1$
	- BCG offset decreases with increasing cluster mass $\Rightarrow d_e > d_l$
	- mag gap is found to decrease with cluster mass $(\text{Lin}+ \text{IO}) \Rightarrow \Delta_e > \Delta_l$

a Bayesian way of thinking about this

Observable	True AB	Observed trend	Spurious AB due to circularity	Spurious AB due to incorrect cluster mass
Concentration	$c_e > c_1$	$c_e > c_1$	$c_{\rm e} = c_1$	$c_e \approx c_1$
Galaxy number	$N_e < N_1$	$N_e < N_1$	$N_e = N_1$	$N_e \le N_1$
BCG offset	$d_e < d_1$	$d_e < d_1$	$d_e = d_1$	$d_e > d_1$
Magnitude gap	$\Delta_e > \Delta_1$	$\Delta_e > \Delta_1$	$\Delta_{\rm e} = \Delta_{\rm l}$	$\Delta_e > \Delta_1$

- if cluster mass of our late-forming sample is severely underestimated
	- concentration varies very weakly with cluster mass $\Rightarrow c_e \approx c_1$
	- $N \propto M^{0.8}$ (but with large scatter) $\Rightarrow N_e \lesssim N_1$
	- BCG offset decreases with increasing cluster mass $\Rightarrow d_e > d_l$
	- mag gap is found to decrease with cluster mass $(\text{Lin}+ \text{IO}) \Rightarrow \Delta_e > \Delta_l$
- none of the 14 pairs of control/random samples passes these tests

- $N \propto M^{\upsilon,\upsigma}$ (but with large scatter) $\Rightarrow N_e \lesssim N_1$
- BCG offset decreases with increasing cluster mass $\Rightarrow d_e > d_l$
- mag gap is found to decrease with cluster mass $(\text{Lin}+ \text{IO}) \Rightarrow \Delta_e > \Delta_l$
- none of the 14 pairs of control/random samples passes these tests
- we live in the "yes" ⊗ "yes" box!

- $N \propto M^{\upsilon,\upsigma}$ (but with large scatter) $\Rightarrow N_e \lesssim N_1$
- BCG offset decreases with increasing cluster mass $\Rightarrow d_e > d_l$
- mag gap is found to decrease with cluster mass $(\text{Lin}+ \text{IO}) \Rightarrow \Delta_e > \Delta_l$
- none of the 14 pairs of control/random samples passes these tests
- we live in the "yes" \otimes "yes" box!
- *• even if the mean mass of our late-forming sample is truly severely underestimated, the difference in masses is sti! far \$om sufficient to explain the huge difference in biases* ⇒ *something like AB at work*

prospects

- among the first group to show a firm detection of assembly bias signal at cluster-scale halos: an important validation of ΛCDM
	- can study other aspects of assembly bias: spin or concentration
	- can further examine differences in intracluster medium
	- hard to detect splashback radius due to small sample size
- *• it is sti! imperative to find ways that are more directly linked to observations to label clusters as early- or late-forming*
	- construct early- and late-forming samples using observable trends found in our study (member galaxy spatial concentration, galaxy number, BCG offset, magnitude gap…)
- forward-modeling techniques like that employed by *Elucid* are becoming popular (e.g., *BORG, TARDIS, COSMIC BIRTH*)
	- rich spectroscopic datasets from DESI and PFS will allow us to do reconstruction at high-*z*: studying assembly bias/galactic conformity!

please see Lin, Miyatake et al. (2022, A&A, 666, A97) for more details!