SEMI-ANALYTIC CATALOG FOR NEXT-GENERATION SURVEYS

Speaker: Wenxiang Pei (裴文祥) Supervisor: Qi Guo (郭琦)

The 2nd Shanghai Assembly on Cosmology and Structure Formation @ Shanghai

Next-Generation Surveys

- DESI/CSST/Eucild/Roman/LSST
 - Large coverage, more obejects, high redshift, faint objects

Telescope	Orbit/ Site	Aperture	Time	FoV (deg^2)	<i>R_{EE80}('')</i>	Sky Coverage (deg^2)	Bandpass (nm)	Photometric Bands
CSST	LEO	2m	~2024	~1.1	<0.15	17500	<mark>255</mark> ~1000	7
Euclid	L2	1.2m	2023	0.56 0.55	0.23 0.63	15000	550~900 920~2000	1 3
Roman	L2	2.4m	2026	0.28	0.24	2000	927~2000	4
LSST	Chile	8.4m	2024	9.6	0.54	18000	320~1050	6

Next-Generation Surveys

- DESI/CSST/Eucild/Roman/LSST
 - Large coverage, more obejects, high redshift, faint objects

Telescope	Orbit/ Site	Aperture	Time	FoV (deg^2)	<i>R_{EE80}('')</i>	Sky Coverage (deg^2)	Bandpass (nm)	Photometric Bands
CSST	LEO	2m	~2024	~1.1	<0.15	17500	<mark>255</mark> ~1000	7
Euclid	L2	1.2m	2023	0.56 0.55	0.23 0.63	15000	550~900 920~2000	1 3
Roman	L2	2.4m	2026	0.28	0.24	2000	927~2000	4
LSST	Chile	8.4m	2024	9.6	0.54	18000	320~1050	6

Wenxiang Pei 2023/10/30

Large box, high resolution simulations

Next-Generation Surveys

- Simulations are crucial for modern cosmology
 - To understand complex physical processes related to various cosmic probs (BAO, RSD, Weak lensing and etc.)
 - To meet the requirement of accurate Cosmology(1%) selection effects, systematic uncertainties, statistic uncertainties

- Lambda CDM
 - Dark matter N-Body simulations
 - Collisionless Dark Matter Particles
 - Gravitation Only
 - FOF / Subfind / Merger Trees
 - - Sub-grid Physics

Wenxiang Pei 2023/10/30

Baryonic progress - Semi-Analytic Model / Hydrodynamical Simulation

- Lambda CDM
 - Dark matter N-Body simulations
 - Collisionless Dark Matter Particles
 - Gravitation Only
 - FOF / Subfind / Merger Trees
 - - Sub-grid Physics

VII OC Wenxiang Pei 2023/10/30

Baryonic progress - Semi-Analytic Model / Hydrodynamical Simulation

- LGalaxies 2015 Carlibrated on MR / MRII
 - 32 / 64 / 128 / 256 snapshots from a same test N-Body simulation (125Mpc/h)
 - Same halo properties at $z\sim0.0$ and similar tree structure

- LGalaxies 2015 Carlibrated on MR / MRII
 - 32 / 64 / 128 / 256 snapshots from a same test N-Body simulation (125Mpc/h)
 - Same halo properties at $z\sim0.0$ and similar tree structure

- LGalaxies 2015 Carlibrated on MR / MRII
 - 32 / 64 / 128 / 256 snapshots from a same test N-Body simulation (125Mpc/h)
 - Same halo properties at $z\sim0.0$ and similar tree structure

more disruption less merger

New Disruption Model

Wenxiang Pei 2023/10/30

Galaxy Emission Lines

- Emission lines
 - Line ratios CLOUDY17

10⁴³

10⁴²

 10^{41}

н Г

 ^{-1}A

flux[ergs

- geometry
- chemical content
- ionizing spectrum
- metallicity (Z)

NºL-10

- ionizing parameter (U)
- Hydrogen density (n_H)

Galaxy Emission Lines 1.5

- Emission lines
 - Line ratios CLOUDY13.03
 - geometry
 - chemical content
 - ionizing spectrum
 - metallicity (Z)

- ionizing parameter (U)
- Hydrogen density (n_H)

Wenxiang Pei 2023/10/30

1.0 0.5 0.0 0.0 0.0 -0.5 -1.0 -1.5-2.0-1.50

AGN Luminosities

<u>NH OG</u>

Wenxiang Pei 2023/10/30

Tong Su (苏童) See her talk on Thursday!

Light-cones

JiuTian-1G Dark Matter Simulations

- Code: L-Gadget3
- Boxsize: 1Gpc/h
- Dark matter particle mass: $3.72295 \times 10^8 M_{\odot}/h$
- Dark matter particle number: 6144³
- Snapshots: 128
- Cosmology: Planck 2018

Wenxiang Pei 2023/10/30

 $\Omega_m = 0.3111, \ \Omega_\Lambda = 0.6889, \ \Omega_{barvon} = 0.0490, \ h = 0.6766, \ \sigma_8 = 0.8102$

Stellar Mass Function

Wenxiang Pei 2023/10/30

N/100

General Galaxy Properties

H_{α} Luminosity Function

Wenxiang Pei 2023/10/30

NH OC

OII Luminosity Function

Wenxiang Pei 2023/10/30

<u>NAOC</u>

OIII Luminosity Function

Wenxiang Pei 2023/10/30

<u>NHOC</u>

$OIII + H_{\beta}$ Luminosity Function

Wenxiang Pei 2023/10/30

<u>~////000</u>

$OIII + H_{\beta}$ Luminosity Function

Wenxiang Pei 2023/10/30

 ~ 1200

SAM Catalog

Galaxies Properties, SFH, photometry & SED, emission lines, AGN SED, HI, light-cones...

x,y,z (RA, DEC) Vx,vy,vz **Redshift CSST** photometry, Emission line, AGN SED **Other survey photometry (SDSS,COSMOS,JP Metallicity** Age **Bulge/Disk Size/Mass** HI mass, rotation velocity Physical properties (Stellar Mass, Cold Gas M **Black Hole Mass, BH Accretion Rate...)**

	Lyalpha	1216.0
	Hbeta	4861.0
	Halpha	6563.0
	0II_3727	3727.0
	0II_3729	3729.0
AS)	0III_5007	5007.0
	0III_4959	4959.0
	0I_6300	6300.0
	NII_6548	6548.0
	NII_6584	6584.0
lass.	SII_6717	6717.0
, i.e.	SII_6731	6731.0
	NeIII_3870	3870.0

Hyper-Millennium Simulation

- Code: PhotoNs (Wang et al. 2021)
- Boxsize: 2.5Gpc/h
- Dark matter particle mass: $3.21 \times 10^8 M_{\odot}/h$
- Dark matter particle number: $16128^3 \sim 4.2 \times 10^{12}$
- Snapshots: 100
- Cosmology: Planck 2018

Wenxiang Pei 2023/10/30

$\Omega_m = 0.3111, \ \Omega_\Lambda = 0.6889, \ \Omega_{barvon} = 0.0490, \ h = 0.6766, \ \sigma_8 = 0.8102$

Hyper-Millennium Simulation

Hyper-Millennium Simulation

Summary

- Galaxy formation models
 - Improve semi-analytical models to solve convergence issue
 - Ionization model + radiation transfer (galaxy emission lines)
 - AGN luminosities
 - Light-cones on request
- Succeed in reproduce local and high redshift galaxy properties, especially including
- Our model could be applied to Hyper-Millennium the largest N-Body cosmological simulation in the world

Wenxiang Pei 2023/10/30

emission line luminosity functions of Halpha, Hbeta, OII, OIII, and AGN luminosities

Volume 2.5³[$h^{-3}Gpc^{3}$], particle mass 3.21 × 10⁸[M_{\odot}/h], Particle number 4 trillion

Summary

- Galaxy formation models
 - Improve semi-analytical models to solve convergence issue
 - Ionization model + radiation transfer (galaxy emission lines)
 - AGN luminosities
 - Light-cones on request
- Succeed in reproduce local and high redshift galaxy properties, especially including
- Our model could be applied to Hyper-Millennium the largest N-Body cosmological simulation in the world

Wenxiang Pei 2023/10/30

emission line luminosity functions of Halpha, Hbeta, OII, OIII, and AGN luminosities

Volume 2.5³[$h^{-3}Gpc^{3}$], particle mass 3.21 × 10⁸[M_{\odot}/h], Particle number 4 trillion **TNANKS**!

Time	snap = 0		
	snap = 1 in 256		
	snap = 2 in 256	sna	
	snap = 3 in 256		
	snap = 4 in 256	sna	
	snap = 8 in 256	sna	
Ļ	snap = 256 in 256	snap	

Wenxiang Pei 2023/10/30

p = 128 in 128 snap = 64 in 64 snap = 32 in 32

ap = 4 in 128 snap = 2 in 64 snap = 1 in 32

ap = 2 in 128 snap = 1 in 64

ap = 1 in 128

• Disruption model in H15

•
$$\frac{M_{DM,halo}(R_{peri})}{R_{peri}^3} \equiv \rho_{DM,halo} > \rho_{sat} \equiv \frac{M_{sat}}{R_{sat,half}^3}$$

•
$$(\frac{R}{R_{peri}})^2 = \frac{lnR/R_{peri} + \frac{1}{2}(V/V_{200c})^2}{\frac{1}{2}(V_t/V_{200c})^2}$$

"MergerTime < 0".

Wenxiang Pei 2023/10/30

• H15 calls function "disrupt" only at the end of each snap, but calls "deal with galaxy merger" in sub-steps whenever

- more disruptions and less mergers.
- The main channel of BH growth is "quasar mode" during mergers, so more disruptions mean smaller BHs.
- Smaller BHs mean less efficient AGN feedback, result in larger SFR and M_* .

• Simulations with larger max snapshots tend to have

Nº KA CO CO

- Change disruption model
 - Deal with disruption in sub-steps

•
$$Pos_{substep,i} = Pos_{n,i} + (Pos_{n+1})$$

•
$$R = \sqrt{\sum_{i=1}^{3} (Pos_{central,i} - Pos_{central,i})}$$

• Calculate $\rho_{DM,halo}$ at distance R instead of R_{peri} in H15

• Compare $\rho_{DM,halo}$ to $\rho_{sat,half}$

Wenxiang Pei 2023/10/30

• Calculate distance from orphan to central at sub-step by linear interpolation

 $_{+1,i} - Pos_{n,i}) \times \frac{\delta t_{step}}{t_{n+1} - t_n}$

 $(S_{orphan,i})^2$

• Change disruption model

• Change disruption model

•
$$R \propto \sqrt{1 - \Delta t / t_{friction}}$$

• Change disruption model

•
$$R \propto \sqrt{1 - \Delta t / t_{friction}}$$

• Smaller time gap $\Rightarrow \Delta t \rightarrow t_{friction} \Rightarrow R \rightarrow 0 \Rightarrow \rho_{DM,halo} \rightarrow \infty$

• Change disruption model

•
$$R \propto \sqrt{1 - \Delta t / t_{friction}}$$

- All orphans will be disrupted!

• Smaller time gap $\Rightarrow \Delta t \rightarrow t_{friction} \Rightarrow R \rightarrow 0 \Rightarrow \rho_{DM,halo} \rightarrow \infty$

• Change disruption model

•
$$R \propto \sqrt{1 - \Delta t / t_{friction}}$$

- Smaller time gap $\Rightarrow \Delta t \rightarrow$
- All orphans will be disrupted!

• $R > R_{central,disk}$

• $R_{central,disk}$: the gas disk radius of central galaxies

Wenxiang Pei 2023/10/30

$$t_{friction} \Rightarrow R \to 0 \Rightarrow \rho_{DM,halo} \to \infty$$

• A distance limit in disruption model to solve this problem:

Wenxiang Pei 2023/10/30

Appendix

<u>MAOC</u>

Wenxiang Pei 2023/10/30

NºL: COC

Wenxiang Pei 2023/10/30

• Emission lines

$$\log_{10} U = -2.316 - 0.36 \left(0.69 + \log_{10} \left(Z_{\text{cold}} / Z_{\odot} \right) \right)$$
$$-0.292 \log_{10} \left(n_{\text{e}} / \text{cm}^{-3} \right)$$
$$+0.428 \left(\log_{10} \left(sSFR' / \text{yr}^{-1} \right) + 9 \right)$$

$$\log_{10} \left[\frac{n_{\rm e}}{\rm cm^{-3}} \right] = 2.066 + 0.310 \left(\log_{10} \left(M_*/M_{\odot} \right) - 10.0 \right)$$
$$+ 0.492 \left(\log_{10} \left(sSFR'/{\rm yr^{-1}} \right) + 9 \right)$$

Wenxiang Pei 2023/10/30

• Get U, Z_{cold} , and n_H for individual galaxies (Baugh et al. 2022)

