Tomographic Alcock-Paczynski Test for CSST

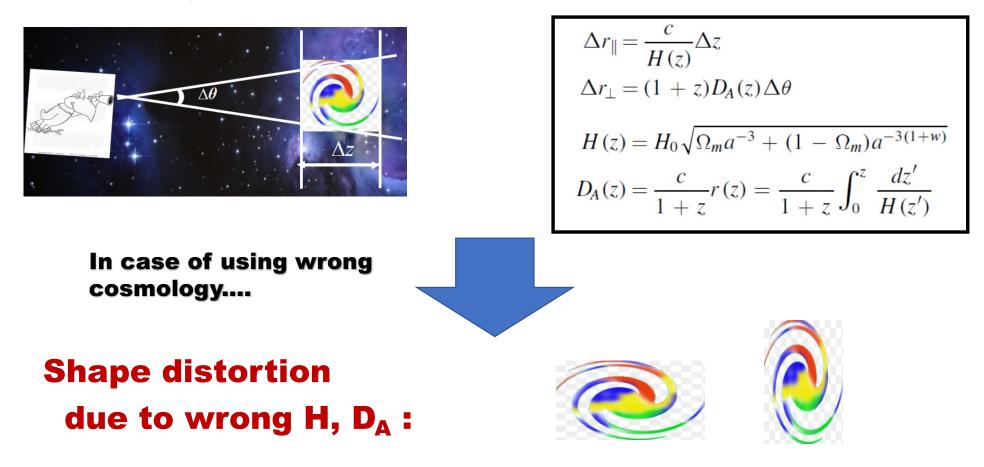
Xiao-Dong Li (with many collaborators)

Sun Yat-Sen University (SYSU)

Nov 2023 @ SJTU

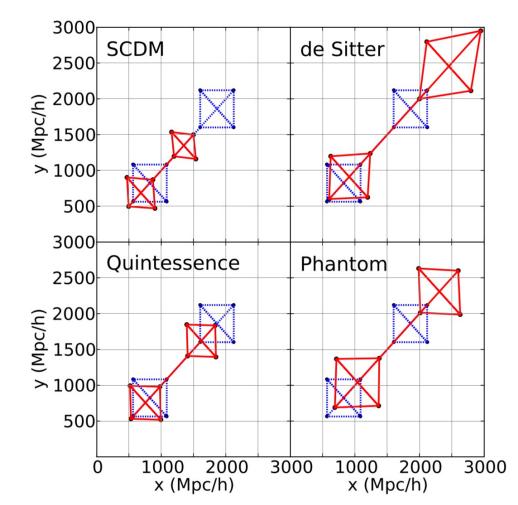
The Alcock-Paczynski test

Alcock & Paczynski, Nature, 1979



Tomographic AP test

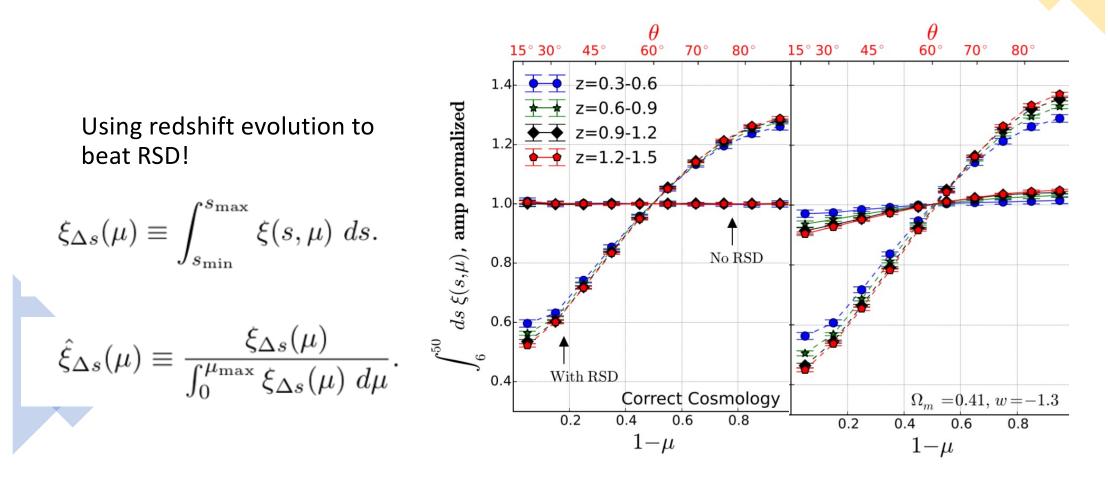
Focus on the **redshift evolution** of the distortion



Li, Park, Forero-Romero et al. 2015, APJ

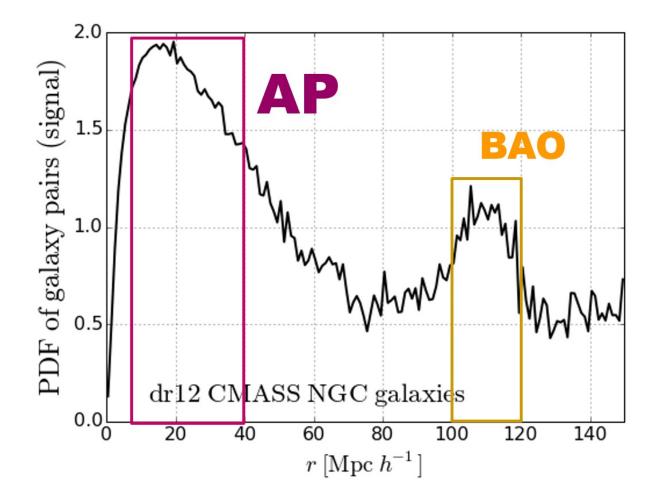
Overcoming RSD via Tomographic Analysis

Xiao-Dong Li, Changbom Park, et al. 2014, 2015, 2016, ApJ



A very unique method!

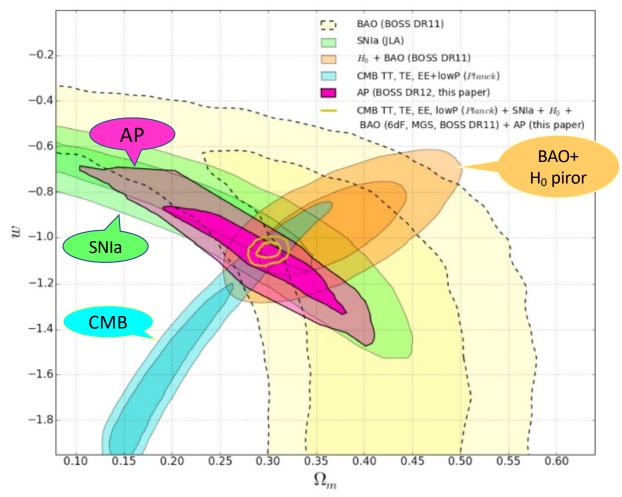
non-linear clustering analysis (6-40 Mpc/h)



Zhang, Huang, Li et al. 2019, MNRAS

Applied to SDSS DR12

Xiao-Dong Li, Changbom Park, et al. 2016, ApJ



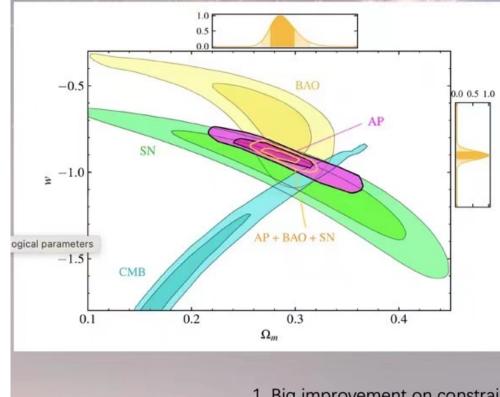
Combining all:

 $\Omega_{\rm m} = 0.301 \pm 0.006$ $w = -1.054 \pm 0.025$

AP reduces the error of Planck+BAO+SNIa+H0 by **30-40%**!

(From Fuxu Dong's PPT)

5. Result from Observation



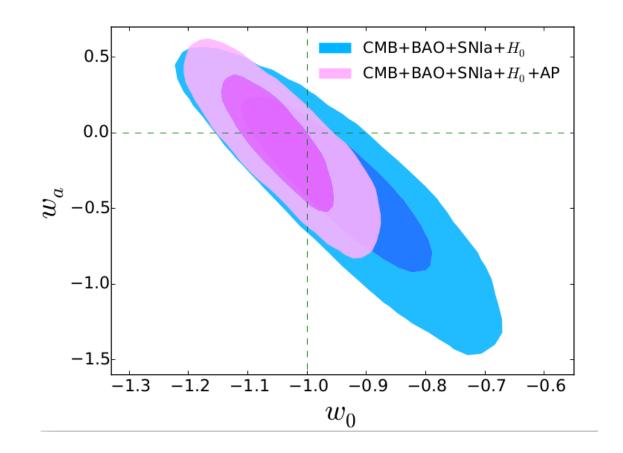
galaxies	probes	Ω_m ,	$\langle \Omega_m \rangle$,	$\sigma(\Omega_m)$	w,	$\langle w \rangle$,	$\sigma(w)$
	BAO	$0.285^{+0.025}_{-0.030}$,	0.271,	0.036	$-0.686^{+0.144}_{-0.149}$	-0.689,	0.147
	SN	$0.333^{+0.063}_{-0.080},$	0.309,	0.076	$-1.0024_{-0.22}^{+0.2}$,	-1.066,	0.216
	CMB	$0.154^{+0.067}_{-0.011}$,	0.199,	0.049	$-1.836^{+0.419}_{-0.092}$,	-1.575,	0.269
baseline	AP	$0.282^{+0.024}_{-0.023}$	0.286.	0.025	$-0.892^{+0.045}_{-0.050}$	-0.9,	0.05
baseline	BAO+AP	$0.287^{+0.012}_{-0.011},$	0.289,	0.013	$-0.897^{+0.020}_{-0.025}$,	-0.905,	0.025
baseline	SN+AP	$0.282^{+0.026}_{-0.020}$,	0.289,	0.024	$-0.897^{+0.040}_{-0.045},$	-0.911,	0.049
baseline	CMB+AP	$0.317^{+0.008}_{-0.005},$	0.32,	0.007	$-0.982^{+0.020}_{-0.025}$,	-0.989,	0.026
baseline	AP(joint)	$0.276^{+0.024}_{-0.021}$,	0.280,	0.024	$-0.892^{+0.04}_{-0.045}$,	-0.899,	0.047
all	AP	$0.255^{+0.023}_{-0.023}$,	0.255,	0.023	$-0.842^{+0.05}_{-0.05}$,	-0.844,	0.054

1. Big improvement on constraining DE model with the addition of AP test.

2. The constraint from AP test is in tension with CMB.

Dynamical dark energy

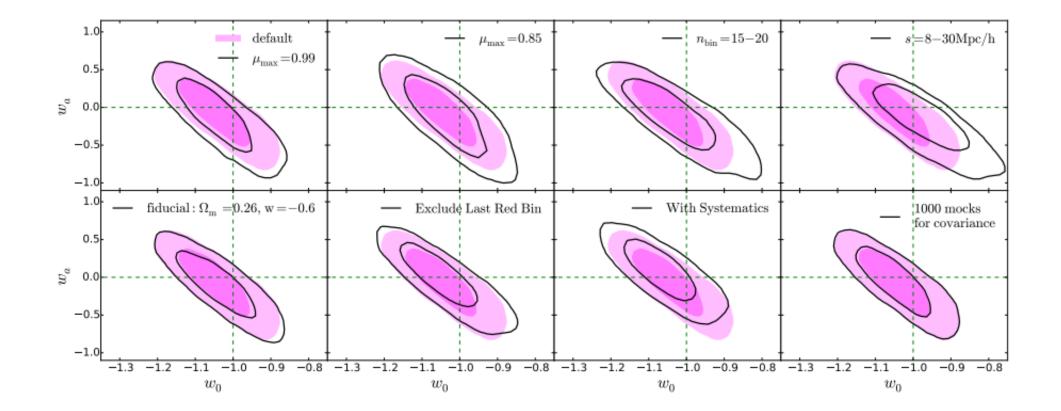
Li, Sabiu, Park, et al. 2018, ApJ



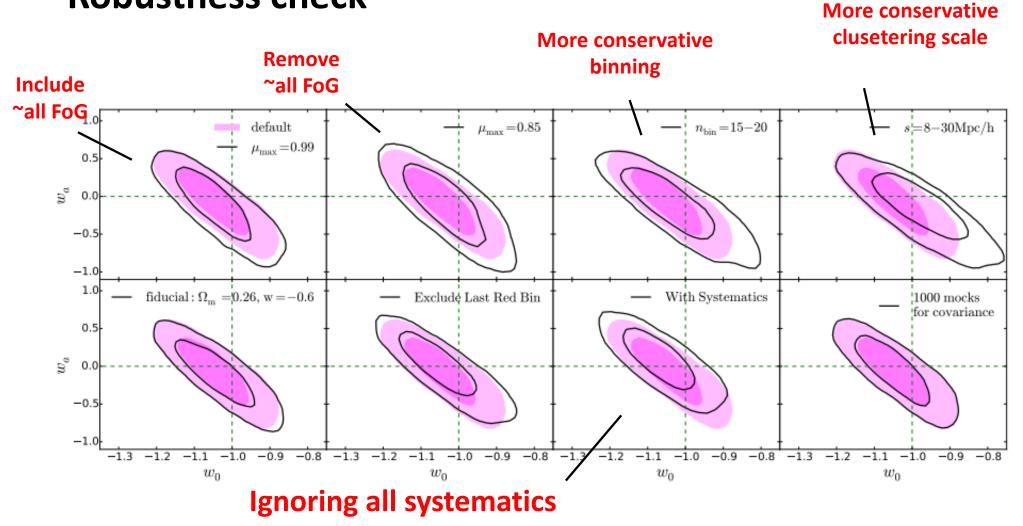
$$w = w_0 + w_a z / (1+z)$$

AP reduces the contour area by **100%!**

Robustness check

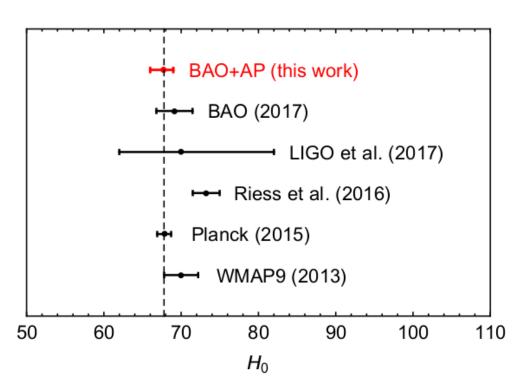


Robustness check



More Cosmological Constraints...

*H*₀ constraints (1801.07403)

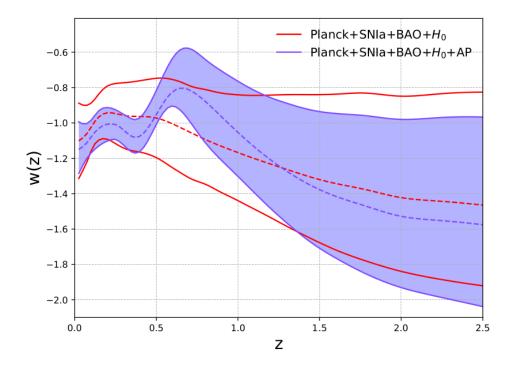


32% improvement by adding AP

Dr. Xue Zhang

More Cosmological Constraints...

*H*₀ constraints (1801.07403) Non-parametric DE constraint (1902.09794)



Yunhe Li (Northeastern Univ.)

Zhenyu Zhang (Peking Univ.)

100% improvement by adding AP!

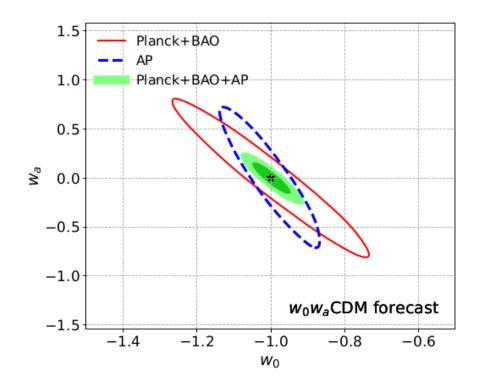
More Cosmological Constraints...

 H_0 constraints (1801.07403) Non-parametric DE constraint (1902.09794) Neutrinos, Curvature (1903.04757)

	ΛCDM e	extension	wCDM extension		
Parameter	Planck+BAO	+AP	Planck+BAO	+AP	
$\Omega_k \ \ldots \ $	$-0.0002\substack{+0.0041\\-0.0040}$	$0.0004^{+0.0042}_{-0.0039}$	$-0.0010\substack{+0.0066\\-0.0061}$	$-0.0015\substack{+0.0042\\-0.0044}$	
$\sum m_{\nu}[eV]$	< 0.181	< 0.141	< 0.295	< 0.243	
<i>N</i> _{eff}	$2.97^{+0.34}_{-0.34}$	$3.07^{+0.33}_{-0.33}$	$2.95_{-0.37}^{+0.38}$	$2.96^{+0.37}_{-0.35}$	
$dn_s/d\ln k$	$-0.0023\substack{+0.0132\\-0.0138}$	$-0.0025^{+0.0133}_{-0.0136}$	$-0.0024\substack{+0.0134\\-0.0136}$	$-0.0025\substack{+0.0132\\-0.0139}$	
<i>r</i>	< 0.115	< 0.121	< 0.113	< 0.111	

20-30% improvement on $\Omega_k \operatorname{m}_v \operatorname{N}_{eff}$

Dr. Xue Zhang



We expect the method play an

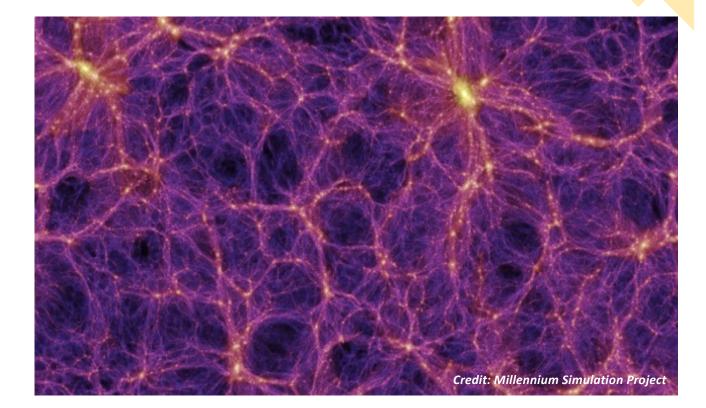
import role in Stage-IV surveys!

Planck+DESI BAO/AP can be 10 times better than Planck+ DESI BAO (1903.04757) (ideal, no systematics)

Current work: Preparing for Stage-IV Surveys

Challenges:

- Deep Surveys -> Non-linear clustering analysis (go beyond 2pCF!)
- Covariance
- Systematics (e.g. redshift errors of slitless survey)



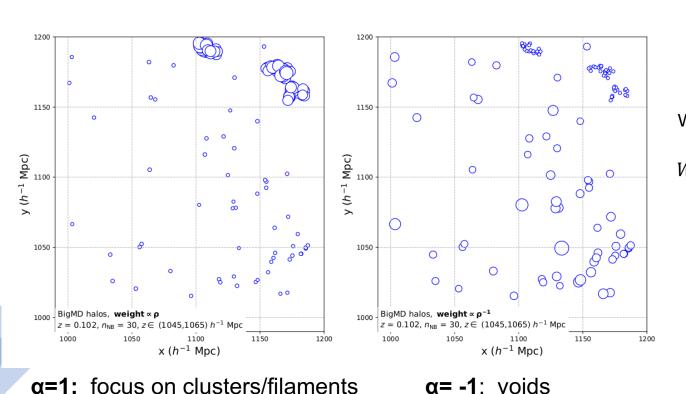
Outline

Liang Xiao Sun Yat-Sen Univ. 1. Beyond 2-point statistics

2. Covariance estimation

3. Systematics from Redshift Errors

Beyond 2-point CF: Marked Statistics



α=1: focus on clusters/filaments

From: Yizhao Yang et al., 2020, ApJ

Yizhao Yang Haitao Miao Limin Lai SJTU NAOC SJTU

Weight = ρ^{α} ,

```
W(\mathbf{r}) = \langle \delta(\mathbf{x})\rho(\mathbf{x})^{\alpha}\delta(\mathbf{x}+\mathbf{r})\rho(\mathbf{x}+\mathbf{r})^{\alpha} \rangle
```

Our Advantages

* Avoid analytical modeling

* Can use any statistics

* Easier than emulation method

* only emulate systematics not

everything;

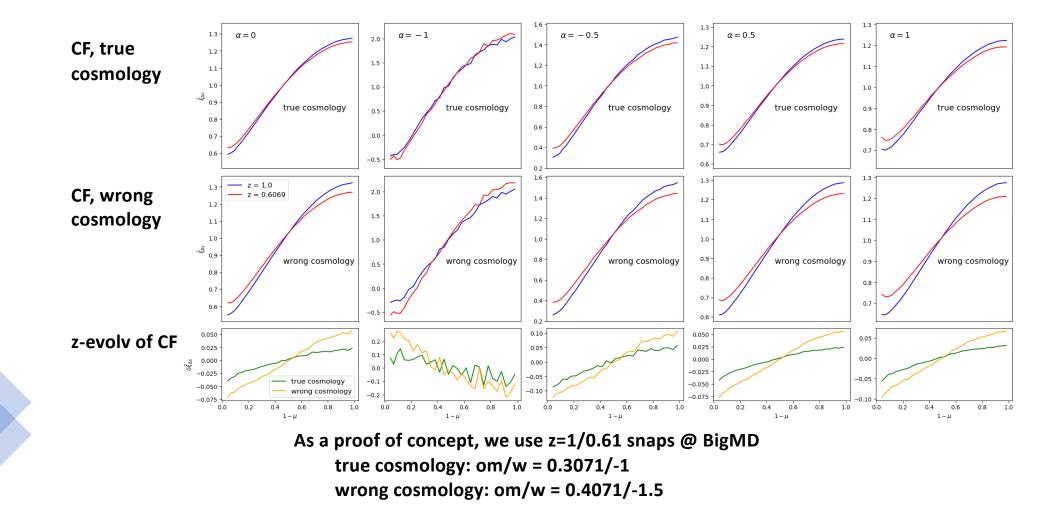
* fast mock will work fine (Qinglin

Ma et al., ApJ, 2020, arXiv1908.10595)

on

Qinglin Ma (TSU)

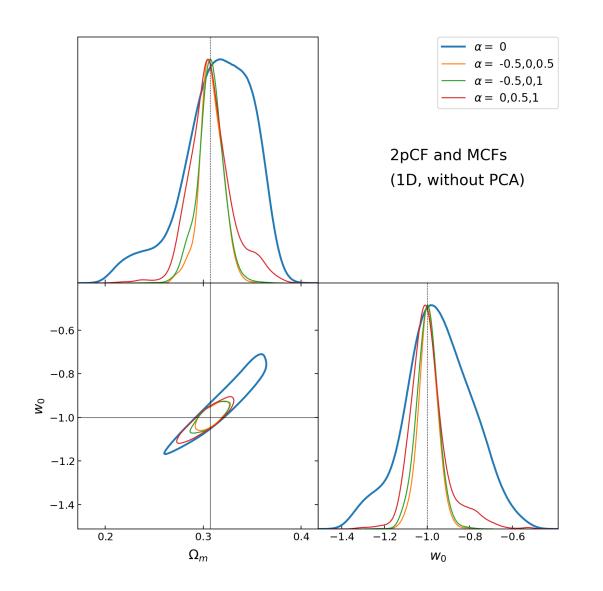
Best-fit = minimal redshift evolution after systematics correction



Test based on BigMDPL simulation

Name	Box(Mpc/h)	Particles	$m_p(M_{\odot})$	ε (kpc/h)	Ω_m
BigMDPL	2500	3840 ³	2.4×10^{10}	10.0	0.3071
Ω_B	Ω_{Λ}	σ_8	n _s	H ₀ (km/s/Mpc)	Code
0.048	0.693	0.829	0.96	67.8	GADGET-2

Klypin, Yepes et al. 2016, MNRAS

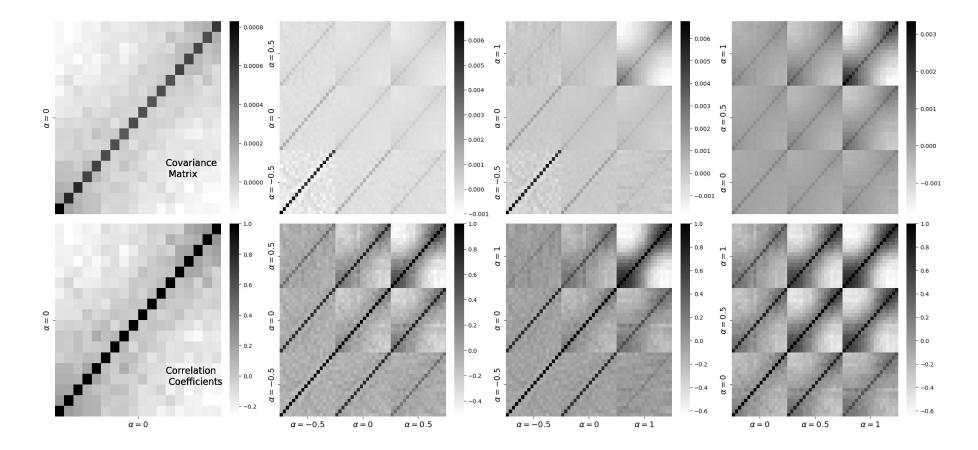


Liang Xiao Sun Yat-Sen Univ.

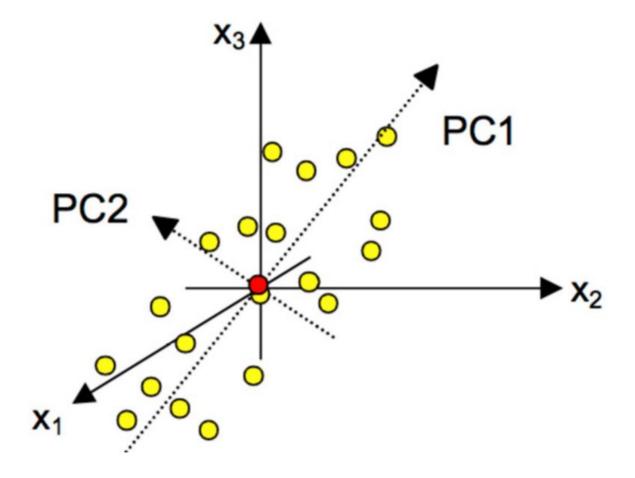
Marked CFs are much

more powerful!

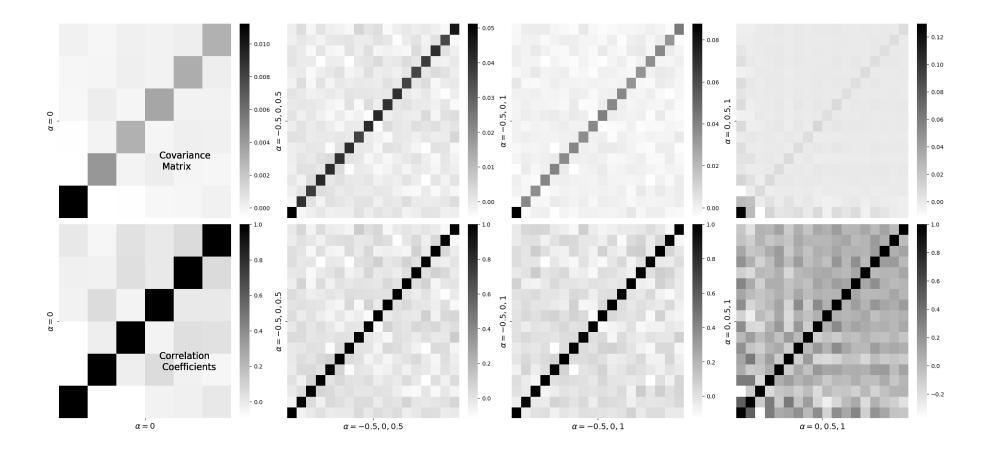
Problem: Too Large Covariance Matrix



Solution: Using PCA Compression!

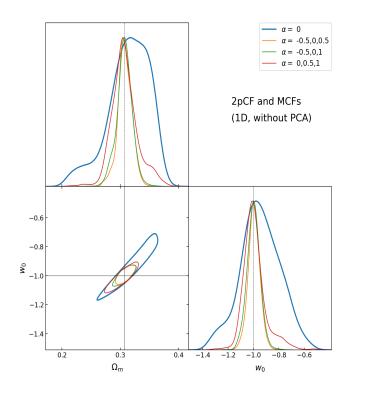


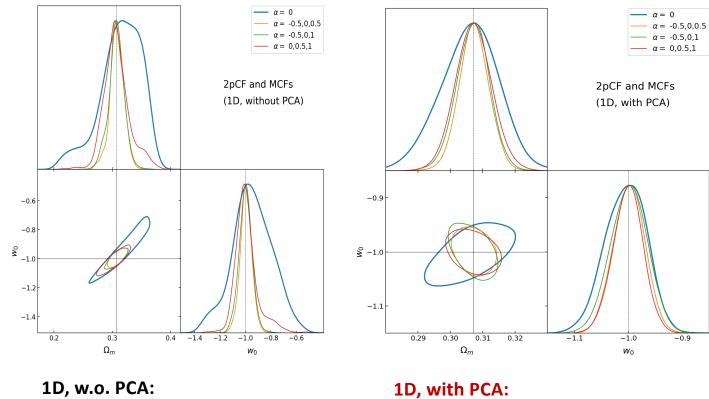
Covariance after PCA



Liang Xiao Sun Yat-Sen Univ.

Cosmological Constraints



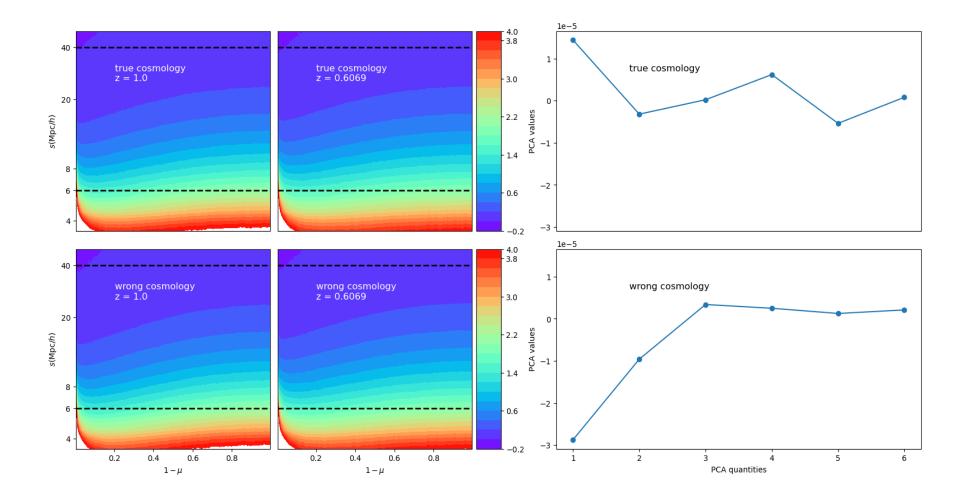


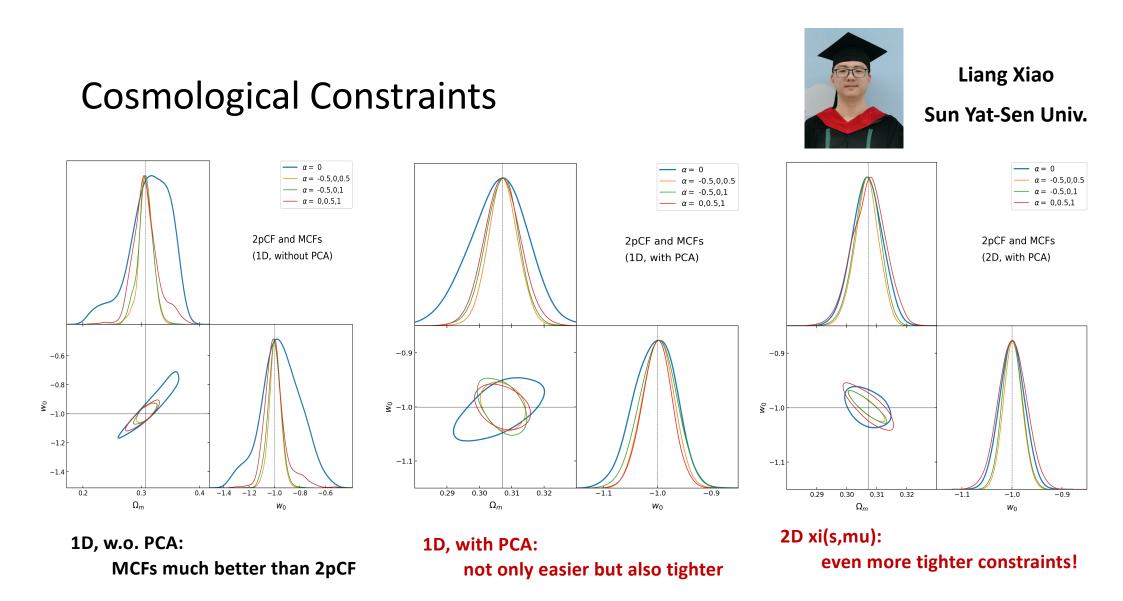
Liang Xiao Sun Yat-Sen Univ.

, w.o. PCA: MCFs much better than 2pCF

1D, with PCA: not only easier but also tighter

Going futher more: PCA of 2-D $\xi(s,\mu)$





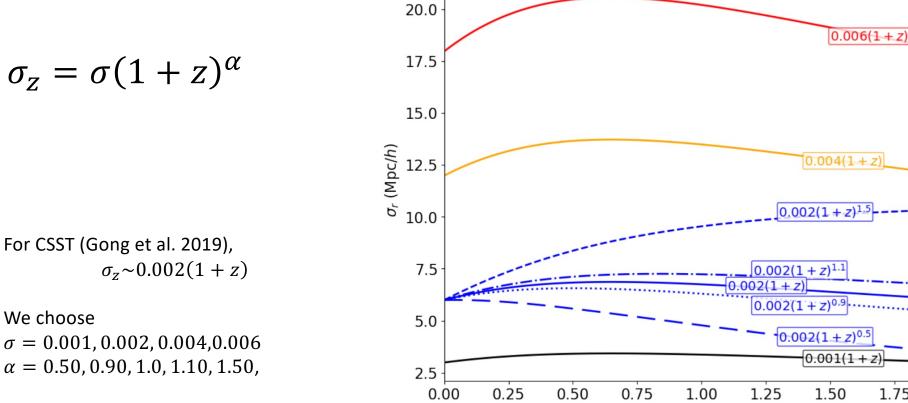
Outline

Liang Xiao Sun Yat-Sen Univ. 1. Beyond 2-point statistics

2. Covariance estimation

3. Systematics from Redshift Errors

Distortion from redshift error



Xiao, Li, et al. 2023, MNRAS

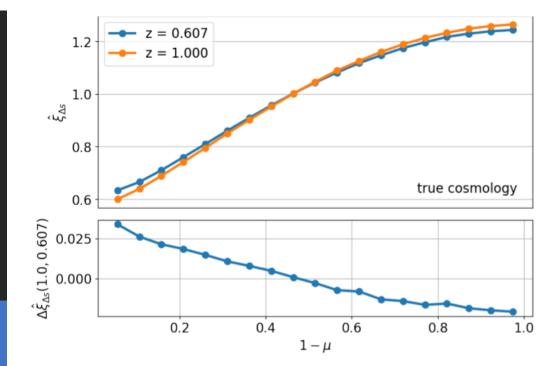
Z

1.75

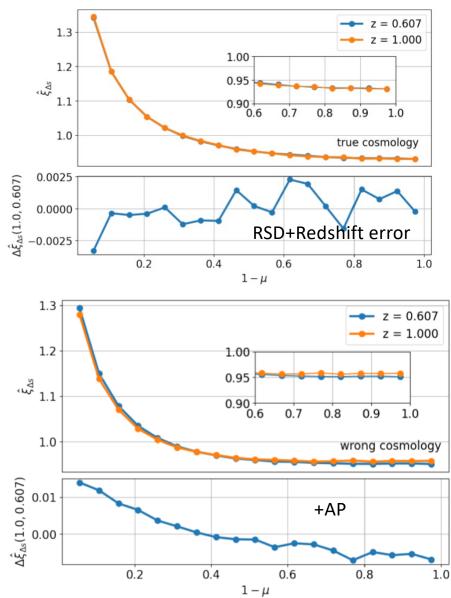
2.00

For CSST (Gong et al. 2019), $\sigma_z \sim 0.002(1 + z)$

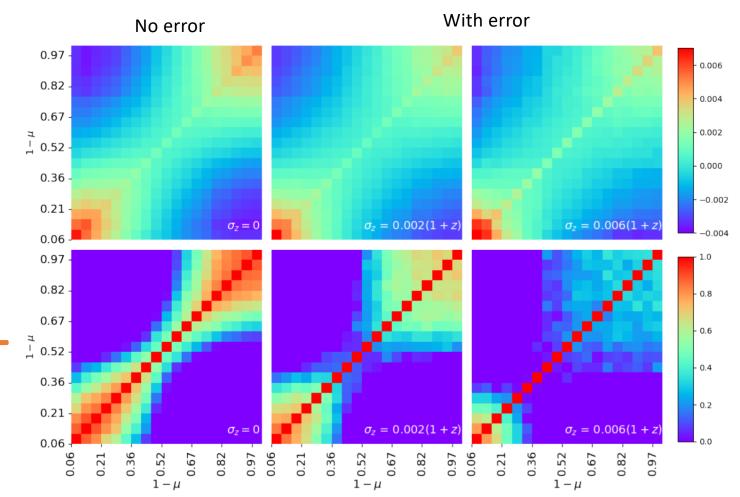
We choose $\sigma = 0.001, 0.002, 0.004, 0.006$ $\alpha = 0.50, 0.90, 1.0, 1.10, 1.50,$



The systematic bias



Effects on covariance matrix

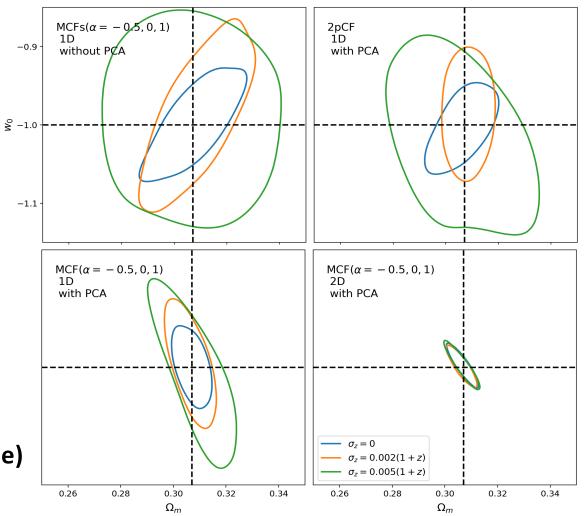


Effects on Results

0.002*(1+z): 30% weaker (OK)

0.005*(1+z): ~100% weaker (possible)

2D results are less affected (need check)



Conclusion and Future

Conclusion

- Combining different marked CF can greatly improve constraining power
- PCA is very helpful! (for covariance estimation & improving power & enable 2-D analysis!)

- Robust against simple forms of redshift errors (need more test)
 - More realistic redshift errors; more systematics
- Cosmological Dependence of RSD (arXiv: 1904.05503, emulator)

Thank you for listening