A strong lensing view of the core-cusp problem

Alessandro Sonnenfeld (Shanghai Jiao Tong University)

The core-cusp problem in massive galaxies

Theory

Schaller et al. (2015)

Observations

The core-cusp problem in massive galaxies

Theory

Schaller et al. (2015)

Observations

Sensitivity to baryonic physics

Chisari et al. (2019)

Strong gravitational lensing

$$\theta_{\rm Ein} = \sqrt{\frac{4GM}{c^2}} \frac{D_{\rm ls}}{D_{\rm l}D_{\rm s}}$$

- Rare event (~1 per square degree)
- Probes mass on scales of 5-10 kpc (1" at z=0.5)
- ~1000 strong lenses known

What a single lens tells us

- Total projected mass within the Einstein radius
- Third derivative of the lens potential at the Einstein radius (maybe)
- Number of constraints on the radial profile <= 2

$\rho(r) \propto r^{-\gamma}$

 $\gamma = 2.2$

What we want to measure

 The simplest physically interesting model has 3 degrees of freedom in the radial direction

Shajib et al. (2021)

Stars-dark matter degeneracy

Auger et al. (2010)

Strong lensing and stellar kinematics

Sonnenfeld et al. (2012)

Strong lensing and stellar kinematics

Oldham & Auger (2018)

Strong lensing and stellar kinematics

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 503, 2380–2405 (2021) Advance Access publication 2021 February 24

Dark matter haloes of massive elliptical galaxies at $z \sim 0.2$ are well described by the Navarro–Frenk–White profile

Anowar J. Shajib[®],^{1,2} Tommaso Treu[®],² Simon Birrer³ and Alessandro Sonnenfeld[®]

¹Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 606374, USA

²Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA

³Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305, USA

⁴Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden, the Netherlands

doi:10.1093/mnras/stab536

Challenges in stellar dynamics modelling

- Mass-anisotropy degeneracy
- Mass-geometry degeneracy
- Sensitivity to gradients in M*/L

Strong lensing in the coming years

- Euclid, CSST and Rubin will discover 10⁵ lenses
- 4MOST will take spectra of 10⁴ lenses

Forecasts

- Assumptions:
 - 1000 lenses, known lens and source redshift
 - 2 constraints per lens: image positions and radial magnification ratio

Forecasts

- Complete sample of strong lenses
- Fit to Einstein radius distribution

Zhou et al. (in prep.)

Strong lensing in the coming years

- Can we do without stellar kinematics?
- Can we extract more information than just the Einstein radius?
- Can we achieve high completeness in strong lens samples?
- Can we correct for selection effects?