

Characterizing the assembly of dark matter halos with **protohalo size histories**

arXiv:2309.01039

Kai Wang (王凯) Kavli Institute for Astronomy and Astrophysics at PKU

Collaborators: Houjun Mo (UMass), Yangyao Chen & Huiyuan Wang (USTC), Yingjie Peng (PKU) Xiaohu Yang & Jiaqi Wang (SJTU), Zheng Cai (THU) 2023.10.31 The 2nd Shanghai Assembly on Cosmology and Structure Formation, Shanghai

Halo

Assembly

Bias

Early-formed Late-formed

Assembly

Bias

Early-formed Late-formed

Assembly

Bias

Early-formed Late-formed

Halo Assembly bias

At fixed halo mass, the clustering of dark matter halos depends on secondary halo properties. (Wechsler & Tinker 2018) The entanglement of secondary halo properties and their large-scale environments. (Wang+2023)

Take-away message

For cluster-size halos, the halo assembly bias effect is •strong for halo structural parameters, •weak for halo assembly parameters.

If

halo assembly history determines halo structure,

then

how the halo structure knows its environment without the assembly history knowing it?

> Halo assembly history cannot determine halo structure.

> > 2.

Halo assembly history knows it. Mass accretion history doesn't.

Mass accretion history

If

halo assembly history determines halo structure,

then

how the halo structure knows its environment without the assembly history knowing it?

Halo assembly history cannot determine halo structure.

Halo assembly history knows it. Mass accretion history doesn't.

$$R = \sqrt{\frac{\sum m_i ||\mathbf{x}_i - \mathbf{x}_{cen}||^2}{\sum m_i}}, \quad \mathbf{x}_{cen} \equiv \frac{\sum m_i}{\sum m_i}$$

Mass accretion history

Protohalo size history

Mass accretion history v.s. Protohalo size history

Mass accretion history

• Modeling(McBride+2009)

$$M(z) = M_0(1+z)^{\gamma} e^{-\delta z}$$

• Bumpy

• Halo formation time: z_{half}

Protohalo size history

• Modeling(Wang+2023) $R(z) = \frac{2R_c}{\left(\frac{z}{z_c}\right)^{-\alpha} + \left(\frac{z}{z_c}\right)^{-\beta}}$

• Smooth

• Protohalo size: R_c

Mass accretion history

Mass accretion history

 $z \sim 2$

 $M_{\rm h,z=0} = 10^{14.08} h^{-1} {\rm M}_{\odot}$

Take-home messages

Halo assembly bias for cluster-size halos

- No signal in the mass accretion history
- Strong signal in the protohalo size history

- Large diversity of high-z protoclusters
- Protohalo size as secondary property

visit WWW.kosmoswalker.com for more

-		-	-	-	•	-		-	
	÷								-
									-
-	-:-							-	
	:								_
	÷								
								_	
		-	-	-	-	•	-	-	
	÷								
									-
-								-	
									-
									_
	:								
							_		
	:								
	İ								

• An efficient and robust method to estimate halo concentration

$$M_{\rm vir} = \int_0^{r_{\rm vir}} 4\pi r^2 \rho(r) dr$$
$$R_1 = \frac{1}{M_{\rm vir} r_{\rm vir}} \int_0^{r_{\rm vir}} 4\pi r^3 \rho(r) dr$$
$$R_1 = \frac{c - 2\ln(1+c) + c/(1+c)}{c[\ln(1+c) - c/(1+c)]}$$

~260 DM particles in TNG100-3-Dark

Kai Wang, H.J. Mo, Yangyao Chen, Joop Schaye 2023 (arXiv: 2310.00200)

