Galaxy clustering at small scale and measurement of structure growth

Zhongxu Zhai(翟忠旭) Department of Astronomy, SJTU

Oct 30th –Nov 3rd, 2023 The 2nd Shanghai Assembly

Galaxy 2-point correlation function

Bautista+2018

The Aemulus (alpha) Project

- * Multi-institution collaboration
- Results: Suite(s) of high-resolution Nbody simulations spanning currentlyallowed cosmological parameter space
- Goal: precision emulation of statistics of dark matter halos and galaxies: Halo mass function Halo bias function Galaxy correlation function Galaxy-galaxy lensing

https://aemulusproject.github.io/

The Aemulus (alpha) Project

Aemulus I: cosmological models

From Halos to Galaxies

Approaches to modeling the galaxy-halo connection

← ph	ysical models		empirical models		
Hydrodynamical Simulations	Semi-analytic Models	Empirical Forward Modeling	Subhalo Abundance Modeling	Halo Occupation Models	
Simulate halos & gas; Star formation & feedback recipes	Evolution of density peaks plus recipes for gas cooling, star formation, feedback	Evolution of density peaks plus parameterized star formation rates	Density peaks (halos & subhalos) plus assumptions about galaxy — (sub)halo connection	Collapsed objects (halos) plus model for distribution of galaxy number given host halo properties	

Wechsler & Tinker 2018

Aemulus III: Galaxy clustering

Construct the emulator for real and redshift space correlation function of galaxies at z=0.55, the accuracy is better than sample variance and reaches 1% at 1-10 Mpc/h

Aemulus III

Modeling SDSS-BOSS galaxies

Aemulus V

All simulations assume GR

Modeling of galaxies: velocity bias, concentration, assembly bias, etc.

Both real and redshift space clustering can match

Allows deviation from GR: velocity scaling parameter

Measurement of structure growth

Aemulus V

$\exists \mathbf{r} \times \mathbf{i} \lor \mathsf{v} > \mathsf{astro-ph} > \mathsf{arXiv:} 1611.08606$

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 25 Nov 2016]

Lensing is Low: Cosmology, Galaxy Formation, or New Physics?

Alexie Leauthaud, Shun Saito, Stefan Hilbert, Alexandre Barreira, Surhud Mc Kevin Bundy, Jean Coupon, Thomas Erben, Catherine Heymans, Hendrik Hile Moraes, Maria E. S. Pereira, Sergio A. Rodriguez-Torres, Fabian Schmidt, Hu Navarro

We present high signal-to-noise galaxy-galaxy lensing measurements of the BOSS CN lensing data from CFHTLenS and CS82. We compare this signal with predictions from the stellar mass function and the projected and two dimensional clustering of CMASS. standard models of the galaxy-halo connection, robustly predicts a lensing signal tha that our results are robust to a variety of systematic effects. Lowering the value of S_8 the lensing with clustering. However, given the scale of our measurement ($r < 10 h^{-1}$ be taken into consideration. We explore the impact of baryon physics, assembly bias, relativity on $\Delta\Sigma$ and show that several of these effects may be non-negligible given t cosmological effects from the details of the galaxy-halo connection, the effects of bal facing joint lensing and clustering analyses. This is especially true in the context of la surveys with precise measurements but complex selection functions.

Search... Help | Advanced

Clustering Analyses

Clustering and Lensing

Halo Occupations

Measurement of structure growth

Halo shape effect

The Aemulus nu Project

Re-analysis with massive neutrinos

Constraints on neutrino mass

Preliminary

On the tensions

On the tensions

$\frac{\text{SIMBIG}}{P_{\ell}(k < 0.5)} B_0(k_{123} < 0) CNN$	SS (10% volume) 0.5)	+ BBN prior			- H H L	Hahn et al. (2022) Hahn et al. (2023) emos et al. (2023)		
GC BOSS C GC BOSS C GC BOSS (f GC BOSS (f CMB Planck CMB Planck CMB ACT+ CMB ACT L WL KiDS-10 WL KiDS + WL DES-Y3 WL DES-Y3 WL DES-Y1 WL HSC-Y3 GC+CMBL GC+CMBL	MASS-SGC $P_{\ell}(k)$ MASS-SGC $P_{\ell}(k)$ ull volume) B_0 + ull volume) P_{ℓ} fix TT, TE, EE + TT, TE, EE + WMAP Lensing + BAO 00 VIKING + DES C_{ℓ} 3x2pt DELS + $Planck$ unWISE + $Plan$	< 0.25) PT – < 0.25) Emu. BBN Prior ted Ω_b, n_s lowE lowE + lens. -Y1		Amo	Iv Kobay Ph (Agh Agh Madhavad A n et al. (2022), S T I Sugiy V Krole	anov et al. (2020) yashi et al. (2022) ilcox et al. (2022) Chen et al. (2022) anim et al. (2020) Aiola et al. (2020) Aiola et al. (2020) Aiola et al. (2020) Secco et al. (2021) segari et al. (2022) roxel et al. (2023) yama et al. (2023) White et al. (2022) exwski et al. (2022)		
0.2	0.4	0.6 S		8	1.0	1.2		
SIMBIG analysis Hahn+2023								

Summary

- * The emulator methodology is powerful and promising for both cosmology and galaxy science.
- * Cosmological measurement at small scale reveals some tension with other experiments.
- * It's possible that our model is not complete.
- * (possible) Future directions:
- * Application to latest and future surveys: DESI/Euclid/Roman
- * Cosmological simulations, e.g. massive neutrinos (next generation of Aemulus suite)
- * More summary statistics, e.g. galaxy-galaxy lensing
- * Modeling methods, e.g. miscentering of central galaxies, sub/super Possionian of satellites, radial profile of dark matter halos, assembly bias (environment, orientation, anisotropic effect etc) and more.

Thanks