

# Prospects of the kSZ constraints on the baryonic effect

2023.11.02 SJTU



Yi Zheng (郑逸) School of Physics and Astronomy, Sun Yat-Sen University



## Motivation

- Cosmological implications of weak lensing require accurate matter power spectrum prediction up to 5-10 h/Mpc.
- Baryonic (feedback) effect manifests itself at 1 h/Mpc, or even larger scales, leading systematic error
- First principle prediction from Hydro-sim, if not impossible, requires too many resources
- Emulators: HOW and WHAT to emulate?



## Baryonification

- and DM density profiles within and around halos.

$$\rho_{\rm nfw}(r) \rightarrow \rho_{\rm dmb}(r) = \rho_{\rm clm}(r) + \rho_{\rm gas}(r) + \rho_{\rm cga}(r),$$



• 7 parameter phenomenological model (Baryon Correction Model, BCM) describing the modified gas

• Originally proposed by Schneider&Teyssier (1510.06034); further developed in 1810.08629;2009.14225





## **Baryonification emulators**



- How to emulate? —— rescaling DM simulations to include baryonic effect
- What to emulate? mapping BCM parameters to S(k)
- BCemu emulator (2108.08863); BACCO emulator (2011.15018)
- Be Fed in WL analysis (2206.08591); Global fitting with WL, X ray, tSZ, kSZ observations (2110.02228; 2309.02920; et al.)
- [See 2305.09710 for a Hydro-sim based emulator SP(k)]

## Current constraints

- Fitted to gas/halo and stellar/halo mass fractions from X-ray, optical and infrared observations
- Comparison between two emulators





### Mock pairwise kSZ observation

 $\lg M_c, \delta, \gamma, \mu$ : the slope of the gas profile

 $\theta_{ei}$ : maximum radius of gas ejection

|      | Θ                 | $\Theta_{ m mid}$ | $\Theta_{\mathrm{S22}}$ | $\Theta_{ m G23}$ | Prior       |
|------|-------------------|-------------------|-------------------------|-------------------|-------------|
| Gas  | $\log M_{\rm c}$  | 13                | 13.2                    | 14.53             | [11, 15]    |
|      | ) $	heta_{ m ej}$ | 5                 | 5                       | 4.36              | $[2,\!8]$   |
|      | $\delta$          | 7                 | 7                       | 6                 | $[3,\!11]$  |
|      | $l \gamma$        | 2.5               | 2.5                     | 1.92              | $[1,\!4]$   |
| Star | $\eta$            | 0.225             | 0.24                    | 0.23              | [0.05, 0.4] |
| Gas  | $\mu$             | 1                 | 0.3                     | 0.5               | [0,2]       |
|      |                   |                   |                         |                   |             |

|                        | FWHM                      | Noise                  | Redshift                | $\overline{V}$ | $ar{n}_{ m g}$             | $ar{M}$              | $f_{ m sky}$ |
|------------------------|---------------------------|------------------------|-------------------------|----------------|----------------------------|----------------------|--------------|
|                        | $[\operatorname{arcmin}]$ | $[\mu K	ext{-arcmin}]$ |                         |                | $[(h^{-1}\mathrm{Gpc})^3]$ | $[{ m M}_\odot/h]$   |              |
| CMB-S4-like + Next-LSS | 1                         | 2                      | $0.8 \ (0.6 < z < 1.0)$ | 37.8           | $2 \times 10^{-4}$         | $2.6 \times 10^{13}$ | 1            |

### Zheng&Zhang, in prep.









### Parameter degeneracy



### Zheng&Zhang, in prep.

 $\Theta_{mid}$  adopted















### kSZ&RSD synergy, CSST+CMB-S4

**CSS-OS:** 0.6<z<0.9, 17500 deg<sup>2</sup>,  $\sigma_7^0 = 0.005$  $n_g = 1.6 \times 10^{-3}$ ,  $N_{gas}^{g,i} = 5 \times 10^4$ ,  $k \le 0.2h/Mpc$ 

> **Detector noise** (µK-arcmin) ~1

overlapping area (deg<sup>2</sup>) 8000

| z = 0.75                    | $\left[ rac{\sigma_{log_{10}	au_T}}{ log_{10}	au_T }\%  ight]$ |
|-----------------------------|-----------------------------------------------------------------|
| $-\text{only}, N_{sys} = 0$ | _                                                               |
| $+\mathrm{kSZ}, N_{sys}=0$  | 0.13                                                            |
| nly, $N_{sys} = 5e4$        | -                                                               |
| $SZ, N_{sys} = 5e4$         | 0.70                                                            |
| , -3-                       | L                                                               |



Li&Zheng, in prep.







## Summary

- Baryonificatoin methodology based on the Baryon Correction Model (BCM) is promising to quantify and constrain the baryonic (feedback) effects in a Bayesian paradigm. It is crucial for small scale cosmological tests such as for neutrino, Modified gravity, et al. (1911.08494) and to solve tensions like the  $S_8$  tension (partly, 2110.02228, 2206.08591, 2309.02920, ).
- BCM parameters are highly degenerated with each other in its design. Synergy between different observations from WL, Xray, SZ et al. are necessary.
- S/N of the kSZ detection will be ~100 in a CMB-S4 era. It is an amazing probe sensitive to both large and small cosmological scales. It definitely will play its role in constraining the baryon distribution in and around halos in the future.
- If CMB-S4 is too far away for you, please consider ACTpole and Simon.
- If you are interested in the kSZ detection from real observations, please check Shaohong Li's talk tomorrow.

Thanks!