

Environmental effects on the assembly of dynamically cold disks in cluster galaxies -- Fornax vs. TNG50

Yuchen Ding (丁郁琛) Shanghai Astronomical Observatory 30 Oct 2023, Shanghai, SJTU/TDLI Collaborators: Ling Zhu, the Fornax3D team

Background Spiral **ETG** Slow rotator

- Environment affects the star-formation of galaxies.
- Environment affects the internal dynamical structure of galaxies, but hard to quantify.

The Fornax3D survey

- Deep IFU using MUSE/VLT, FOV:1'x1', pixel size:0.2''x0.2''
- 23 ETGs, 10 LTGs within R_v of the Fornax cluster.
- Cover the outer faint regions

Outline

- Cold disk -- chemo-dynamical decomposition via a population-orbital superposition model
- Environment -- obtaining t_{infall} of each galaxy by using a correlation of $t_{initial}$ vs. t_{cold} obtained from TNG50.
- Environmental effects on the cold disk formation. (Fornax vs. TNG50 cluster)

Chemo-dynamical decomposition via a Population-orbital superposition model

Zhu+2020, Zhu+2022b

Chemo-dynamical decomposition via a Population-orbital superposition model

Gravitational potential= $M*/L \times MGE + DM + ...$

Zhu+2020, Zhu+2022b

100

r [arcsec]

 $\lambda_z = L_z / J_c$ 0.02 0.00 0.04 8 14 $\overline{2}$ 2 0 Stellar age [Gyr] Probability density [M*/unit] Metallicity Z/Z_{\odot} $\mathbf{1}$ Circularity λ_z Ω Ω 0 $^{-1}$ -1 50 100 50 100 50 $\overline{0}$ Ò Ω

- Define structures in a flexible and physical-motivated way.
- Quantify the morphology, kinematics, age and metallicity of each component.

r [arcsec]

• Direct comparison to simulations.

r [arcsec]

 $\lambda_z = L_z / J_c$ 0.02 0.00 0.04 8 14 Stellar age [Gyr] Probability density $[M*/unit]$ Metallicity Z/Z_{\odot} 1 Circularity λ_z Ω Ω 0 Hot inner stellar halo $^{-1}$ 50 100 50 100 50 $\overline{0}$ Ò Ò r [arcsec] r [arcsec] r [arcsec]

A good indicator of past massive mergers (see Zhu+2022a,b)

 $\overline{2}$

100

- Define structures in a flexible and physical-motivated way.
- Quantify the morphology, kinematics, age and metallicity of each component.
- Direct comparison to simulations.

 $\lambda_z = L_z / J_c$ 0.02 0.00 0.04 8 14 $\overline{2}$ 2 0 Probability density [M_{*}/unit] Stellar age [Gyr] Metallicity Z/Z_{\odot} 1 $\lambda_z > 0.8$ Cold disk Circularity λ_z Ω Ω 0 Hot inner stellar halo $-1\frac{1}{0}$ 50 100 50 100 50 Ò Ò r [arcsec] r [arcsec] r [arcsec]

A good indicator of past massive mergers (see Zhu+2022a,b)

100

- Define structures in a flexible and physical-motivated way.
- Quantify the morphology, kinematics, age and metallicity of each component.
- Direct comparison to simulations.

 $\lambda_z = L_z / J_c$ 0.02 0.00 0.04 8 14 Ò. $\overline{2}$ 2 Stellar age [Gyr] Probability density [M*/unit] Metallicity Z/Z_{\odot} 1 <mark>λ, > 0.8</mark> Cold disk " Circularity λ_z λ _z < 0.8 Ω Ω Hot non-disk 50 100 50 100 50 100 Ò Ω Ω r [arcsec] r [arcsec] r [arcsec]

- Define structures in a flexible and physical-motivated way.
- Quantify the morphology, kinematics, age and metallicity of each component.
- Direct comparison to simulations.

Orbital decomposition of cold disk and hot non-disk components

Key parameters

For all 16 galaxies: f_{cold} : Cold disk fraction t_{cold} : Cold disk age Z_{cold} : Cold disk metallicity

For 9 galaxies with extended disks: ∇t_{cold} : Cold disk age gradient ∇Z_{cold} : Cold disk metallicity gradient

And the corresponding parameters for the hot components.

Outline

- Cold disk -- chemo-dynamical decomposition via a population-orbital superposition model
- Environment -- obtaining t_{infall} of each galaxy by using a correlation of $t_{initial}$ vs. t_{cold} obtained from TNG50.
- Environmental effects on the cold disk formation. (Fornax vs. TNG50 cluster)

Infer the infall time of each galaxy in the Fornax cluster

- Tight correlations between t_{cold} vs. $t_{initial}$ from TNG50
- For Fornax cluster galaxies, with t_{cold} known, we infer $t_{initial}$ from these correlations

Outline

- Cold disk -- chemo-dynamical decomposition via a population-orbital superposition model
- Environment -- obtaining t_{infall} of each galaxy by using a correlation of $t_{initial}$ vs. t_{cold} obtained from TNG50.
- Environmental effects on the cold disk formation. (Fornax vs. TNG50 cluster)

Environmental effects on the cold disk fraction

- Ancient infallers tend to have lower f_{cold} at all mass region.
- f_{cold} of recent and intermediate infallers is consistent with CALIFA field galaxy.

Environmental effects on the cold disk age & age gradient

• Cold disks are old in the ancient infallers, which happen to be the most massive galaxies in Fornax cluster.

Environmental effects on the cold disk age & age gradient

- Cold disks are old in the ancient infallers, which happen to be the most massive galaxies in Fornax cluster.
- Low mass galaxies show positive age gradient while high mass galaxies show negative gradient in Fornax.
- Positive age gradient is found in both Fornax and TNG50.

Cold vs. hot

- Ancient infallers: hot and cold components have similar age.
- Recent infallers: cold component is significantly younger.

Cold vs. hot

- Ancient infallers: hot and cold components have similar age.
- Recent infallers: cold component is significantly younger.
- The cold disks are more metal-rich that the hot component in Fornax, not seen in TNG50.

Infalling into the cluster changes galaxies' gas distribution: (1) gas in the outer disk is stripped (2) gas left is concentrated in the center

Galaxies in TNG50: falling into cluster stops the star-formation in extended disks and causes the new star-formation in the center, thus leading to low cold-disk fraction and old stellar disk in ancient infallers.

Summary

- We create population-orbital superposition models to 16 Fornax galaxies, thus we can quantify the luminosity fraction, age, and metallicity of the dynamical cold disk of each galaxy.
- We find the ancient infallers have a significantly lower cold disk fraction (~3 times lower), regardless of stellar mass. The recent and intermediate infallers have consistent cold disk fraction as a function of stellar mass with CALIFA field galaxies.
- We find ancient infallers have old cold disks, and some galaxies have positive age gradients.
- We find consistent results in TNG50 and these are direct results of gas removing in the outer disk of galaxies when falling into the cluster.

Cold disk fraction at z=0 vs. infall

- At t_{infall}, ancient and intermediate infallers had slightly lower cold-disk fraction than that of recent infallers.
- Cold-disk is strongly disrupted after galaxies fall into the cluster due to the tidal shocking near the pericentric passages.

Infer the infall time of each galaxy in the Fornax cluster

- Tight correlations between t_{cold} vs. $t_{initial}$ from TNG50
- For Fornax cluster galaxies, with t_{cold} known, we infer $t_{initial}$ from these correlations
- t_{infall} obtained in this way consistent with galaxies' phase-space positions in the cluster

Environmental effect on the cold disk metallicity & metallicity gradient

- Cold disk metallicities of Fornax galaxies are slightly higher than the general massmetallicity relation (Gallazzi+2005).
- Most galaxies show negative metallicity gradient in the cold disks.
- Cold disk metallictiy in TNG50 is much higher.

Environmental effect on gas and gas distribution

After the infall, the star-formation radius shrinks. The mass of cold gas decreases.

Background

Surface brightness profile

Weakness of photometrical bulge-disk decomposition:

- Model dependent
- Not physically motivated
- Disk may not be exponential

Environmental effect on star-formation radius and gas

After the infall, the star-formation radius shrinks. The mass of cold gas decreases.

In TNG50

Select cluster viral mass $\log_{10} M_{200c} / M_{\odot} > 13.3$ galaxy stellar mass $\log_{10} M_*/M_\odot \in [8,12]$, Re>0.5 kpc

t_{infall} vs. t_{cold} vs. t_{whole}

A phase-space check on t_{infall}

