

Uncover galaxies' merger history combining stellar kinematics and populations

Ling Zhu (朱玲)

Shanghai Astronomical observatory

Oct 30 2023 @ SJTU

Yuchen Ding (SHAO), Le Zhang (SHAO), Yupeng Jin (SHAO) Glenn Van de Ven (Vienna Uni), Ryan Leaman (Vienna Uni), Behzad Tahmasebzadeh (SHAO-> Michigan Uni), Juntai Shen(SJTU), Dimitri Gadotti (Durham), the Fornax 3D team, the TIMER team.

Annalisa Pillepich (MPIA): MPG Partner Group

Galaxies grow through mergers

Can we quantify the ancient mergers ?

- Most mergers happen in the past.
- When did they happen?
- How massive the accreted satellite galaxies were?

It is hard: merger event may last only < 1Gyr, the stars from two progenitors are totally mixed

Galaxy structures as fossil records of the assembly history

Neither classic bulge nor outer halo from photometric decomposition is a good indicator of ex-situ mass

Bell+ 2017

Remus+2022

Galaxy structures as fossil records of the assembly history

Stars in different structures overlap in spatial distributions But well seperated in phase-space of E vs. Lz.

Kinematic structure decomposition:

- Physically motivated definition of structures.
- Widely used for simulations (e.g., Abadi+2003, Obreja+2016, Du+2020).
- Expensive for real galaxies from observations.

Ancient massive mergers uncovered in MW

Chemo-dynamical decomposition of nearby galaxies by applying a population-orbit superposition method to IFU data

Observations : Integral Field Spectroscopy

IFU surveys for thousands of galaxies

- Deep IFU using MUSE/VLT, • FOV:1'x1', pixelsize:0.2''x0.2''
- 23 ETGs, 10 LTGs within R_{ν} of the • Fornax cluster.
- Cover the outer faint regions •

Sarzi+2018

Data release: Sarzi, Iodice+ 2022

- Decompose a galaxy into multiple components in a flexible, physical-motivated way.
- Direct comparison of observed galaxy structures to simulations

Understand the origins of galaxy structures from TNG50

-Hot inner stellar halo as relics of ancient massive mergers

- Disk: dynamically cold, relatively young and metal-rich
- Bulge: dynamically hot, old and metal-rich
- Hot inner stellar halo: dynamically hot, old and metal-poor

Diverse origins of the dynamically-hot bulge

- Three major orgins of bulge: born hot, born cold but heated by secular process, heated or accerated by mergers.
- Galaxies with different merger histories have similar hot bulge fractions.
- Hot halo at r>Re is mainly produced by mergers.

Zhang & Zhu+ in prepare

Zhu, Pillepich+2022

Remus+2022

- Tight correlation between the luminosity fraction of hot inner stellar halo and galaxies' ex-situ mass.
- Weak correlation between bulge fraction and ex-situ mass.

- Tight correlation between the luminosity fraction of hot inner stellar halo and galaxies' ex-situ mass.
- Scatter caused by merging orbits

Weighing and timing ancient massive mergers in NGC 1380 and NGC1427

NGC 1380: from IFU + dynamical model

Hot inner stellar halo: stars on highly radial orbits, spatially more extended than the bulge; like the Gaia-Enceladus-Sausage in the MW.

Zhu, vdVen, Leaman, et al. (2022)

Helmi+2018, Belokurov+2018

Hot inner stellar halo: stars on highly radial orbits, spatially more extended than the bulge; like the Gaia-Enceladus-Sausage in the MW.

Zhu, vdVen, Leaman, et al. (2022)

Helmi+2018, Belokurov+2018

12.07.2023, SS20: Ir

Merger Mass of Fornax galaxies NGC 1380 and NGC 1427

Population-dynamics: merger timing

Only after the last major merger, a cold stellar disk could reform and survive until today

 \cap

Zhu, vdVen, Leaman, et al. (2022)

Population-dynamics: merger timing

 \cap

Zhu, vdVen, Leaman, et al. (2022)

Belokurov et al. (2020)

GC 13

- Progenitor of the galaxy at different redshifts
- Build by star
- A major merger at z>1.8,

Orbit-superposition model of Barred galaxies

Behzad Tahmasebzadeh

Modelling of barred galaxies

NGC 4371 observed by MUSE and ATLAS3D $\sigma \left[km/s ight]_{90 \hspace{0.1cm} 120 \hspace{0.1cm} 150}$ $egin{array}{c} \log_{10}(\Sigma) \ _{-1.6} \ _{-0.8} \ _{0.0} \end{array}$ $V_{los} \ [km/s] \ _{-100} \ \ _{0} \ \ _{100}$ $h_3 \ _{-0.15 \ 0.00 \ 0.15}$ $h_4 \\ -0.15 \ 0.00 \ 0.15$ 100 $\mathbf{25}$ Y [arcsec] TIMER 0 data -25Y [arcsec] 25bar 0 model -25-0.04 0.00 0.04 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 1.51.51.51.5 $\begin{bmatrix} 25 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -25 \\ -25 \end{bmatrix}$ residuals 0 0 0 0 0 $-25 \quad 0$ $\mathbf{25}$ $-25 \quad 0$ $\mathbf{25}$ -25 0 $\mathbf{25}$ $-25 \quad 0$ $\mathbf{25}$ $-25 \quad 0$ 25X [arcsec] X [arcsec] X [arcsec] X [arcsec] X [arcsec]

Good fit to bar features in photometry and kinematic data

Tahmasebzadeh, Zhu, Shen et al. 2022 method validation Tahmasebzadeh, Zhu, Shen et al. 2023 submitted for NGC4371

Constraint on bar pattern speed

- Strongly constrain the bar pattern speed, even with limited data spatial coverage.
- Bar constrained by both the mean velocity and velocity dispersion maps
- A slow bar, with the dimensionless bar rotation parameter of R=2.2. Tahmasebzadeh, Zhu, Shen et al. 2023 submitted

Dynamical structure decomposition for NGC 4371

- BP/X bar identified from orbit frequency analysis (x1 dominates).
- Nuclear disk/classic bulge separated by circularity distribution.

Tahmasebzadeh, Zhu, Shen et al. 2023 submitted

Summary

- We created a population-orbit superposition method (Zhu+2020), and modified it to barred galaxies (Tahmasebzadeh, Zhu, Shen+ 2022, 2023).
- Three major physical origins of dynamically hot bulge.
- Hot inner stellar halo is a good indicator of ancient massive mergers.
- Uncover the assembly history of NGC 1380 with high-quality MUSE data.

Time of Merger

