Probing Feedback Processes in Galaxy Formation with Simulations

Fulai Guo (郭福来)

Shanghai Astronomical Observatory Chinese Academy of Sciences

SHACS2, Shanghai Jiao Tong University, October 30 - Nov 3, 2023

Stellar and AGN Feedback in Galaxy Formation

Type Ia Supernova Feedback in the nearby quiescent galaxy M104

Wei Miao

Supernova Feedback in M104, the Sombrero Galaxy 草帽星系

Hot subsonic gaseous outflows due to feedback

Miao & Guo, to be submitted soon

Type II Supernova Feedback in the nearby starburst galaxy M82 Supernova Feedback in M82, the Cigar Galaxy 雪茄星系 theory (CDM-motivated) $\phi(L)$ $-L_{*} \sim 3 \times 10^{10} L_{\odot}$ observations luminosity SN AGN ?

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = q , \\ &\frac{\partial\rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = \rho f - \nabla P - \nabla P_{\rm C} , \\ &\frac{\partial\rho E}{\partial t} + \nabla \cdot [(\rho E + P) \mathbf{v}] = Q - C + \rho \mathbf{v} \cdot f + I , \\ &\frac{\partial\rho_{\rm C} E_{\rm C}}{\partial t} + \nabla \cdot [(\rho_{\rm C} E_{\rm C} + P_{\rm C}) \mathbf{v}_{\rm C}] = Q_{\rm C} - I . \end{split}$$

Yuezhen Ye

Quasar Mode and Jet Mode AGN Feedback

quasar mode (radiative mode)

Multi-phase quasar outflows (v ~ 1000 km/s; Fabian 2012; Harrison et al 2018)
 No well-established correlation with star formation (even positive feedback in some systems)

 Jet Mode (Radio Mode)

- O Major evidence for negative AGN feedback, seen in galaxy clusters and groups
- What about lower-mass systems, e.g., L* galaxies? Does AGN feedback start to operate in them?

Jet-mode AGN Feedback in X-ray Galaxy Clusters

Radio lobes, X-ray cavities, weak shocks, sound waves ...

0.3-2 keV *Chandra* image of NGC 5813 (Randall+11)

X-ray image of the inner Perseus cluster

Jet-mode AGN feedback in Galaxy Clusters

(Guo et al 2018, MNRAS; Duan & Guo 2018 & 2020, ApJ; Guo 2020 ApJ; Duan & Guo 2023)

Density Map

Jet Simulation

Guo et al 2018

Hydrodymamic features:

Prominent radio lobes

Weak forward shock

cool core expansion

Wake flows behind radio lobes

Jet Simulation in Galaxy Clusters

wake flow in AGN feedback: metal-rich outflows and cold filaments

Duan & Guo 2018, 2023

Hydrodymamic features:

Prominent radio lobes

Weak forward shock

cool core expansion

Wake flows behind radio lobes

Metallicity distribution metal-rich outflows uplifted by AGN bubbles

Jet Mode AGN Feedback in L^{*} Galaxies

Fermi Bubbles in Various Bands

GIANT GAMMA-RAY BUBBLES FROM *FERMI*-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND?

MENG SU¹, TRACY R. SLATYER^{1,2}, AND DOUGLAS P. FINKBEINER^{1,2} ¹ Institute for Theory and Computation, Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138, USA; menosu@cfa barvard edu

The All-sky Fermi View at E >10 GeV

² Physics Department, Harvard University, Cambridge, MA 02138, USA *Received 2010 June 2; accepted 2010 September 23; published 2010 November 10*

The Origin of the Fermi Bubbles

Galactic Feedback

Fermi bubbles, Milky Way Feedback?

Stellar Feedback; M82

AGN Feedback; Radio Galaxy

The origin of the Fermi bubbles

• Galactic winds from the Galactic Center? (Crocker & Aharonian 2011; etc)

M82 wind due to Type II SNe

ROSAT X-ray map

14

Prediction: Forward Shock in the CGM

thermal gas density distribution

produce a forward shock and expansion of the inner gaseous halo

Guo & Mathews, ApJ, 2012a, 2012b

Fermi Bubbles:gamma-ray emission of Radio Lobes in the Milky Way?eROSITA bubbles:shocked CGM bubbles of the Fermi bubble event?

nature

Where is the forward shock? 激波在哪里?

The Evolution of Fermi bubbles

The energetics and age of the bubbles are constrained very well by the bubble morphology and the gas temperature within the bubbles!

Figure 9. Synthetic X-ray (0.7-2 keV) surface brightness map in Galactic coordinates with a Hammer-Aitoff projection for run A at t = 5 Myr. The dots represent the edge of the observed Fermi bubbles.

Zhang & Guo, 2020

张瑞玉

Properties of the Fermi bubbles in Our Model

```
single-jet Power: _{3.42 \times 10^{41}} \text{ erg s}^{-1}
Jet duration: 1 Myr
Current Fermi bubble age: 5 Myr
Total injected energy ~ 2 \times 10^{55} \text{ erg}
Eddington ratio: ~ 0.001, hot accretion mode
Sgr A* accretion rate ~ 0.0001 solar mass/yr
```

Miller et al.(2016) found the bubble temperature is kT~0.40 keV, gas density ~0.001 cm⁻³

Bordoloi et al.(2017) found the bubble age is 5-9 Myr from UV absorption line studies of HVCs towards the bubbles.

Sgr A* is orbited by over a hundred massive stars with ages ~ 6±2 Myr

Fermi Bubbles: Forward shock + (unseen) inner lobes

Significance of integrated residual, E = 10.0 - 500.0 GeV

-25

25

0

-25

25

0

very weak evidence for inner ejecta lobes in gamma rays

Jet-mode AGN Feedback: galaxy clusters vs. L* galaxies

Jet mode AGN feedback in L* galaxies:

(Weak or strong) inner ejecta bubbles + prominent shocked bubbles

A Comprehensive Picture of Jet-mode AGN Feedback galaxy clusters vs. L* galaxies

Jet mode AGN feedback in galaxy clusters: prominent radio lobes + weak shocks

Jet mode AGN feedback in L^{*} galaxies:

(Weak or strong) inner ejecta bubbles

+ prominent shocked bubbles

(kpc-scale radio structures commonly found in local Seyfert galaxies)

Next: How do Fermi-bubble-like events affect the evolution of L* galaxies?

