Is the core cusp problem a matter of perspective?

Shanghai Jiaotong University

Wenting Wang 2023/10

The core-cusp problem of dwarf galaxies?

- Cold dark matter (CDM) simulations predict that the inner density slopes of dark matter halos are close to -1 (cusp).
- Dynamically modelling of real observed dwarf galaxies suggest close to 0 inner slopes (core).

> How to explain:

- alternative dark matter model (SIDM)?
- baryonic physics?

The core-cusp problem of dwarf galaxies?

Stellar feedback can only form cores for relatively bright dwarfs. (e.g. Hayashi, et al., 2020; Read, et al., 2018)

- Do we understand systematics behind dynamical modelling?
- Violations of some model assumptions might mistakenly result in core inner slopes (Genina, et al, 2018)

Hayashi, et al., 2020

Validate model assumptions with numerical simulation

- > ~30 dwarf galaxies selected from Auriga (Grand et al. 2018).
- > Half star-forming, half quiescent 6 are Sagittarius dSph-like systems.

The dynamical method (JAM): Jeans Anisotropic Multi Gaussian Expansion modelling

(e.g. Watkins, et al., 2013 Zhu et al., 2016)

- ➤ Feature of JAM:
- Axis-symmetric
- Can be applied to both radial velocity and proper motions
- Can fit any functional form of the underlying potential model through Multi-Gaussian Expansion (MGE)
- Can model observational errors
- Can model a constant fore/background

Bias correlates with SFR

~30 dwarf galaxies from Auriga

Wang, Zhu et al. 2022

- The best-fits are ensemble unbiased, but the signs and amount of bias depend on the star formation rate.
- > The mass within half-mass radius is constrained better.

Bias correlates with dynamical status

The bias in best fits depends on the dynamical status of the systems.

 x-axis is the median of the radial action angle distribution:
 0.5 means in steady state.

Wang, Zhu et al. 2022

Bias correlates with dynamical status

Wang, Zhu et al. 2022

Bias correlates with dynamical status

Wang, Zhu et al. 2022

How to get precise constraints on inner slopes?

Multiple populations

➢ Focus on ensemble averaged results

Selecting steady state systems

It has long been known that binary orbital motions act to increase the observed velocity dispersions of galaxies.

It is not a problem for MW-mass galaxies and massive classical dwarfs.

But maybe a problem for ultra faint dwarfs.

Au16-9 Au23-4 true . 109 fit original 109 108 108 p(r)[M₀/kpc³] ρ(r)[M₀/kpc³] 106 106 10⁵ 105 true • fit original 10-1 10-2 10-1 10-2 100 101 100 r[kpc] r[kpc] Au24-24 Au27-25 109 true . true ······ fit original ······ fit original 109 108 108 p(r)[M₀/kpc³] $p(r)[M_{\odot}/kpc^3]$ 106 105 10⁵

101

10-2

10-1

100

r[kpc]

- Binary orbital motions tend to DEFLATE the best constrained inner densities.
- As a secondary effect, it makes the best constrained inner densities more cored.

Wang, et al., 2023

10-2

 10^{-1}

100

r[kpc]

- Au16-9 Au23-4 true • 109 fit original 109 fit binary 108 108 p(r)[M₀/kpc³] ρ(r)[M₀/kpc³] 106 106 true 10 105 fit original fit binary 10-1 10-1 100 101 10-2 100 10-2 r[kpc] r[kpc] Au24-24 Au27-25 109 • true fit original 109 fit binary 108 108 p(r)[M₀/kpc³] ρ(r)[M₀/kpc³] 106 true 105 105 fit original fit binary Wang, et al., 2023 10-2 10-1 10^{-2} 10^{-1} 100 100 101 10 r[kpc] r[kpc]
- Binary orbital motions tend to DEFLATE the best constrained inner densities.
- As a secondary effect, it makes the best constrained inner densities more cored.

Modeling of Draco

Summary

- It is difficult to get good constraints on the inner density slopes for individual dwarf systems due to deviations from steady states.
- Global contraction under estimates in inner density
 Global expansion over estimates in inner density
- Total mass within the half-mass radius of tracers can be constrained the best.
- Using ensemble averaged results over a large sample of steady-state systems is a secure approach to constrain inner density profiles of dwarf galaxies.
- Global contractions are possible to be detected for nearby systems.
- Binary orbital motions can deflate the dynamically constrained inner densities.

How to get precise constraints on inner slopes?

Li et al. 2022

