

Galaxy-Halo Spin Alignment and Conservation in the IllustrisTNG Simulation

Ming-Jie Sheng (盛明捷)

Department of Astronomy, Xiamen University 厦门大学天文学系

mingjie@stu.xmu.edu.cn

The 2nd Shanghai Assembly on Cosmology and Structure Formation Oct. 31. 2023

Group members: Hao-Ran Yu (于浩然), Sijia Li (李思佳), Binghang Chen (陈冰航), Lin Zhu (朱琳)

Collaborators: Peng Wang (王鹏), Shihong Liao (廖世鸿), Xi Kang (康熙), Huiyuan Wang (王慧元), Min Du (杜敏), Yipeng Jing (景益鹏), et al.

Outline

- Background
- Spin Conservation of Dark Matter Clustering
- Comparison of Baryonic Spin in Observation and Simulation
- Prospects and Summary

Density correlations: scale-limited

Primordial perturbation

Density correlations: scale-limited

Primordial perturbation

Cosmic web

Density correlations: scale-limited

Primordial perturbation

Cosmic web

Tracers of cosmic web: halo and galaxy number densities

Tracers of spin: spiral galaxies

- Ellipticity
- Sky alignment

Ellipticity & sky alignment

Tracers of spin: spiral galaxies

- Ellipticity
- Sky alignment
- Two of {spiral parity, dust absorption, relative doppler effect}

Spin conservation of DM halo

• Tidal torque theory

Spin construction method: Yu*+, PRL, 2020

Figure from: Motloch*, Yu*+, Nat. Astron., 2021

• Misalignment between the inertia tensor I of the protogalaxies and the large scale tidal field T they feel.

Spin conservation of DM halo

• Tidal torque theory

• *N*-body simulation and code:

by CUBE (Yu*+, ApJS, 2018)

Qiaoya Wu 吴巧雅

Wu, Yu*+, PRD, 2021

- Initial spin well modeled by the tidal torque theory
- The potential field remains constant
- Spin freezes at low redshift: fossil observable
- Misalignment between the inertia tensor I of the protogalaxies and the large scale tidal field T they feel.

IllustrisTNG simulation

Parameter Description	Value
simulation name	TNG100-1
side length of simulation box $[Mpc/h]$	75
dark matter particles	1820 ³
gas cells	1820 ³
tracer particles	2×1820^{3}
dark matter particle mass $[{ m M}_{\odot}/h]$	5.1×10^{6}
average gas cell mass $[{ m M}_{\odot}/h]$	9.4×10^5
redshift	127~0
sample counts	4546

Counts of Halos and Mean Galaxy Counts per Halo (Galaxies with Stellar Mass Threshold $M_{\rm s} = 10^9 h^{-1} M_{\odot}$) in Different Mass Bins (Mass Units: $h^{-1} M_{\odot}$)

Halo Mass	Halo Counts	Mean Galaxy Counts per Halo
$[10^{11.5}, 10^{12})$	2956	1.2
$[10^{12}, 10^{12.5})$	1051	2.1
$[10^{12.5}, 10^{13})$	355	4.9
$[10^{13}, 10^{13.5})$	124	13.2
$[10^{13.5}, +\infty)$	60	63.6

300 Mpc

Early Universe, protohalo & protogalaxy

Early Universe, protohalo & protogalaxy

Present Universe, halo & galaxy

Star Dark matter Gas Early Universe, Present Universe, protohalo & protogalaxy halo & galaxy

Halo & galaxy evolution

Lagrangian mass distribution

Sheng, Yu*+, ApJ, 2023, Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction

Lagrangian mass distribution

Sheng, Yu*+, ApJ, 2023, Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction

Equivalent Lagrangian radii

 $r_q = \sqrt[3]{\frac{2M_{\rm tot}G}{\Omega_{\rm m}H_0^2}}$

Angular momentum direction correlations

Similar mass distributions → Strong spin correlations

Angular momentum direction correlations

Similar mass distributions → Strong spin correlations

Angular momentum direction correlations

Similar mass distributions → Strong spin correlations

Spin direction reconstruction for baryons

• Spin reconstruction formula:

$$j_i^{\text{reco}} = \epsilon_{ijk} T_{jl}^{(r_q)} T_{lk}^{(r_{q,+})},$$

where r_q is the Lagrangian scale for the total mass (Yu+, PRL, 2020).

Similar to the tidal torque theory

 $j_i^{\rm TTT} = \epsilon_{ijk} \mathbf{I}_{jl} \mathbf{T}_{lk}$

Observations

 For SDSS galaxies, weak (2%) but significant (3σ) detection of correlation between galaxy spin directions and cosmic initial conditions

Motloch*, Yu*+, Nat. Astron., 2021

Observations

- For SDSS galaxies, weak (2%) but significant (3σ) detection of correlation between galaxy spins and cosmic initial conditions
- From galaxy locations (ELUCID, Wang+, 2014, 2016) we can infer (spin reconstruction) galaxy spins
- Many physical processes & systematics involved
 - Density reconstruction error
 - Lagrangian space **remapping**, **RSD**
 - Observations of spin
 - Baryonic processes

Motloch*, Yu*+, Nat. Astron., 2021

Maximally achievable spin direction correlation

- Baryon spins can also be reconstructed.
- Weak mass dependency
- Results are similar for total mass distribution of species, or only for the central galaxy (CG).

Sheng, Yu*+, ApJ, 2023

Maximally achievable spin direction correlation

- Baryon spins can also be reconstructed.
- Weak mass dependency
- Results are similar for total mass distribution of species, or only for the central galaxy (CG).
- With **known** ICs, **known** Lagrangian coordinates, **known** 3D angular momenta at low-redshifts, the spin direction correlation is around 40%.
- Cf. 2% in Motloch*, Yu*+ 2021.

Sheng, Yu*+, ApJ, 2023

Angular momentum magnitude correlations

Sheng, Zhu, Yu*+, in preparation,

Spin Speed and Supportedness Correlation and Evolution of Galaxy-Halo

Angular momentum magnitude correlations

Sheng, Zhu, Yu*+, in preparation,

Spin Speed and Supportedness Correlation and Evolution of Galaxy-Halo

Angular momentum magnitude correlations

Sheng, Zhu, Yu*+, in preparation

Angular momentum magnitude correlations Sheng, Zhu, Yu*+, in preparation

- Gas traces the spin magnitude of DM halo and the primordial spin magnitude;
- The traceability of stars depends on $f_{\rm acc}$;
- Galaxy-halo correlations are effected by the similarity of their co-evolution histories.

Summary

CUBE simulations (*N*-body simulations):

- The correlation between **DM halo** and protohalo spin;
- Spin reconstruction method.

IllustrisTNG simulations:

- Baryonic effects on spin correlation;
- Galaxy baryonic spins can potentially be used in reconstructing the cosmic initial perturbations.

Observational data:

• The correlation between galaxy spins and cosmic initial conditions.

Reference:

Sheng, Zhu, Yu* et al., in preparation, Spin Speed and Supportedness Correlation and Evolution of Galaxy-Halo Systems
 Sheng, Yu* et al., ApJ, 2023, Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction
 Sheng, Li, Yu* et al., PRD, 2022, Spin conservation of cosmic filaments
 Wu, Yu* et al., PRD, 2021, Spin Mode Reconstruction in Lagrangian Space
 Motloch*, Yu* et al., Nat. Astron., 2021, Observational detection of correlation between galaxy spins and initial conditions
 Yu* et al., PRL, 2020, Probing Primordial Chirality with Galaxy Spins

ELUCID HMC method Density reconstruction

Huiyuan Wang+, 2014, 2016

Hamiltonian Markov Chain Monte Carlo (HMC)

Hamiltonian Markov Chain Monte Carlo (HMC)

ELUCID HMC method Density reconstruction

try

Wang+, 2014, 2016

result

