

Dependence of the dark matter halo assembly bias on halo definition and orientation

Qinglin Ma (马庆麟), Collaborator: Cheng Li

Oct30 - Nov 3, The 2nd Shanghai Assembly on Cosmology and Structure Formation

Galaxies form and evolve in dark matter haloes

The halo bias is not purely determined by the halo mass. Halo assembly bias: Old haloes are strongly clustered than young haloes

The different trend of the spin bias is caused by different **halo definitions**

For different halo properties: spin bias is strongly dependent on the halo definition, while concentration bias shows a weak relation, and shape bias is not affected by the halo definition.

The physical origin of the low-mass spin bias:

The splashback halo is thought to be the only reason for the low-mass spin bias

Spin bias is existed for FOFall at low mass for non-sb haloes:

The splashback halo is thought to be the only reason for the low-mass spin bias?

The physical origin of the spin bias:

Two mechanisms (dynamically unstable/stable halo) of spin bias

If dynamically unstable halo is removed, the residual spin bias is same under any halo definition.

 λ_{all} : all particles λ_{bound} : grav-bound particles $|\lambda_{all} - \lambda_{bound} = \Delta \lambda$ $\Delta \lambda \geq 0.01$ (unstable) $\Delta\lambda < 0.01$ (stable)

Comparison between unstable halo/stable halo:

- The unstable halo has higher clustering than the stable halo Unstable halo (5%):
- low-rotated halo has higher clustering. (Strong tidal field...)

Stable halo:

 high-rotated halo has higher clustering. (Twin halo... Johnson et.al 2019)

Two mechanisms of the spin bias

Dynamically unstable halo = splashback halo?

Only **40 %** of them are splashback haloes.

The splashback halo is one of the populations of the unstable halo.

 Note the definition of the splashback halo could affect the result.

------ w/o sb-halos, 100%
------ w/o sb-halos, 25% higher spin
------ w/o sb-halos, 25% lower spin

Anisotropic assembly bias:

Concentration

1.8

1.6

1.4

1.0

θ 1.2 **α** Cvmax

higher 25%, $\cos\theta$:[0.0,1/2]

lower 25%, cos θ :[0.0,1/2]

perpendicular to

filament

Strong anisotropy of the assembly bias is shown for the halo spin or the axis-ratio of halos, which indicates that the slowrotated and elongated halo is more aligned with the filament

Formation time

 $Z_{1/2}$

---- lower 25%, cos θ :[1/2,1.0]

higher 25%, $\cos\theta$:[1/2,1.0]

parallel with filament

Spin

λ

Summary

• Halo definition:

(1) The tension of the spin bias is caused by the halo definition

- (2) Halo definition largely affects the spin bias, weakly varies the concentration bias, but does not change the shape bias.
- (3) The spin bias is from two kinds of mechanisms: the dynamically stable halo with an intrinsic feature and the dynamically unstable halo with an inverted feature.

• Spatial anisotropy:

(1) Strong anisotropy of the assembly bias is shown for the halo spin or the axis ratio of halos, while there is no anisotropy for other properties

How anisotropic bias reflects the alignment

$$b_{\theta}^{rel} = \sqrt{\frac{\xi_{hh}(r|M_h, S, \theta)}{\xi_{hh}(r|M_h, \theta)}} \quad b_{\theta}^{rel, alignment} = \sqrt{\frac{\xi_{hh}(r|M_h, S, \theta)}{\xi_{hh}(r|M_h, S)}}$$

$$\frac{b(\theta_1, \lambda_2)}{b(\theta_2, \lambda_2)} = \sqrt{\frac{\xi(\theta_1, \lambda_2)/\xi(\theta_1)}{\xi(\theta_2, \lambda_2)/\xi(\theta_2)}} = \sqrt{\frac{\xi(\theta_1, \lambda_2)/\xi(\lambda_2)}{\xi(\theta_2, \lambda_2)/\xi(\lambda_2)}} * \sqrt{\frac{\xi(\theta_2)}{\xi(\theta_1)}} = \frac{b^{alignment}(\theta_1, \lambda_2)}{b^{alignment}(\theta_2, \lambda_2)} * \sqrt{\frac{\xi(\theta_2)}{\xi(\theta_2)}}$$

$$\frac{b^{alignment}(\theta_1, \lambda_2)}{b^{alignment}(\theta_2, \lambda_2)} = \frac{b(\theta_1, \lambda_2)}{b(\theta_2, \lambda_2)} * \sqrt{\frac{\xi(\theta_1)}{\xi(\theta_2)}}$$

Splashback halo (sb-halo): Distinct halo that was subhalo at some previous time, i.e., passed through the virial radius of a larger halo.

The different trend of the spin bias is caused by different **halo definitions**

For different halo properties: spin bias is strongly dependent on the halo definition, while concentration bias shows a weak trend and shape bias is not affected by the halo definition.

FOFall: All particles within R_{vir} in the FOF-group.

FOFbound: Gravitationally bound particles within R_{vir} in the FOF-group.

Explanation of anisotropic spin bias

