The evolution of physical baryon profiles in galaxy clusters (Li et al. 2020, 2023)

Qingyang Li

Collaboration: Weiguang Cui, Xiaohu Yang, Romeel Dave, Elena Rasia, Stefano Borgani, Meneghetti Massimo, Alexander Knebe, Klaus Dolag and Jack Sayers

> 31 Oct 2023 The 2nd Shanghai Assembly on Cosmology and Structure Formation

stronomy at Shanghai Jiao Tong University

Galaxy clusters

- The large gravitationally bound systems in the Universe

- Unique laboratories: Ga
 - Galaxy formationCosmology
 - Galaxy-halo connection

Significant ways to understand the properties and history of galaxy clusters!

Baryon distributions from observations

(Ghirardini et al. 2018)

(van der Burg et al. 2015)

- Intracluster medium (ICM): well studied with X-ray/SZ data (z < 1)
- Stellar component: focus on galaxy population

Hydrodynamical simulation: The Three Hundred project

- Zoom-in hydro simulations: Gadget-X, Gadget-MUSIC, GIZMO-SIMBA
- Semi-analytic models: SAG, SAGE, GALACTIC

I. The distribution of physical baryon profiles

(Li et al. 2020)

Investigate the scatter and self-similarity of physical profiles

Gas: density, temperature, metallicity

Stars/Galaxies: mass density, number density, age, SFR/sSFR, metallicity

Do not find any clear radial dependence of stellar age, metallicity and (s)SFR

How about the baryon distribution at high redshifts?

II. The evolution of physical baryon profiles (Li et al. 2023)

Multi physical properties _____ 4. Understand baryon distribution from different views

Global heating history for gas in halos

• Cold and warm-cold gas:

Similar gas evolution but subtle fraction differences!

(Li et al. 2023)

Gas mass density

- A direct and fundamental reflection of gas amount and distribution

• Core region (r $\lesssim 0.1r_{500}$)

Differences due to AGN feedback model

GIZ: kinetic scheme (more efficient) G3X: thermal scheme

- Outer region (r $\gtrsim 0.3 r_{500}$)
 - A deviation from self-similarity since z
 = 2

Gas: Entropy

- A unique view of thermal history
- A power-law profile in the outskirts
- Core region
 - GX: follow a power law slope in line with observation
 - GIZ: an excess accompanied by a flatter profile

High fraction of non-cool-core clusters in GIZMO-SIMBA

The mechanism to dominate central entropy is in debate.

Stellar: mass density

-A major observable

Higher stellar density in GIZ than that in G3X

Early time of consuming gas into stars in GIZ

• Highly constrained at r ~ $0.1r_{200}$

Less affected by the gravitational and nongravitational processes

Stellar: satellite galaxy number density

- Simulations reasonably match well with low-redshift observations
- A faster drop at the outer radius than at the inner region.

> Reflect an early assembled time in the center

(Li et al. 2023)

Summary

We theoretically provide a general picture of the evolution of baryon distributions:

• In outer radii:

Agreements between the two runs and observation and hold the self-similarity assumption. (At low redshifts)

To distinguish large differences at high-redshift -> Deep observations

• In core regions:

Differences in simulations (AGN feedback model?)

 Understand which model is mostly responsible -> Turn on and off each baryon model