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Figure 1: Map-making as an intermediate step in measuring cosmological

parameters. If Fmap = Ftod, then the map-making method W is lossless,
which means that parameter estimation based on the map gives just as small
error bars as using all the time-ordered data.
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(Max Tegmark 1997)

Mapmaking in CMB experiments
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posed techniques include Wiener filtering [65], sparsity priors
[65–67], log-normal priors [68, 69], wavelet-based methods
[70, 71] and others [e.g. 72]. Various machine learning-based
approaches are now being utilized to reconstruct the conver-
gence field, e.g. Generative Neural Network (GNN) [73] and
U-Net [74].

In this work, we investigate how to accurately recover the
convergence map from observable shear maps without los-
ing information in the presence of masks. The relationship
between shear and convergence can be viewed as a linear in-
version problem in Fourier space, where the survey mask can
be represented as an element production that is comparable
to Fourier space convolution. A plausible solution to this
challenge is a widely-used deconvolution algorithm in cosmic
microwave background observations [75] and wide-field inter-
ferometric imaging. For synthesized interferometric mapmak-
ing, images obtained by mapping visibilities and convolving
them with the array synthesized beam are commonly called
dirty images. Linear deconvolution [76–79], which is per-
formed through matrix operations, can be done theoretically,
without distinguishing between point sources and extended
emission. The action the interferometer measurement can be
described by a relationship between the discretized sky x, and
the measured visibility y, expressed as:

y = Ax + n. (1)

Here A represents the interferometric measurement operator,
and n is the thermal noise. Benefits of this approach include a
data product in the image domain that potentially covers the full
celestial sphere, full knowledge of the point-spread function
in all directions, and thorough knowledge of the covariance
matrix relating map pixels.

To focus on the mask issue, we apply AKRA to the gener-
ation of weak lensing convergence maps in the scenario of a
flat sky. In principle, this method can be applied to any survey
geometry, including the entire sky case. Furthermore, we ig-
nore shear measurement noise. These neglected complexities
can be taken into account by our method straightforwardly and
will be addressed in future work. The paper is structured as
follows. In section II, we will present a short review of KS
method (Sec. II A), then have a detailed derivation of AKRA
algorithm (Sec. II B). Sec. III will cover the testing of this
algorithm on simulated shear maps, as well as comparisons to
the KS algorithm. Finally, Section IV provides a summary of
the results and discusses future directions including extending
to curved sky with inhomogeneous shape measurement noise.

II. METHOD

In this article, we will discuss how to reconstruct the conver-
gence from the shear map, using the Fourier space formalism.
In this section, we will first introduce the KS algorithm [57],
which is the most widely used method to reconstruct the con-
vergence from the shear map. Then we will introduce our
AKRA algorithm, which can deal with the masked pixels and
boundary effects in the shear map.

In order to provide better clarity regarding the physical quan-
tities and related symbols involved in the reconstruction pro-
cess, a detailed table has been created and is presented in Table
I. In addition to the physical quantities, the table I also includes
the mask function and the convolution kernel from the mask
that is utilized in the reconstruction process. Boldface letters
have been utilized to denote data vectors and matrices in the
table. The table also lists the relevant sections in which each
quantity is firstly discussed.

A. The Kaiser and Squires (KS) Algorithm

Both the convergence and the two components of shear,
W1 (\) and W2 (\), are linear combinations of the second deriva-
tives of the lensing potential, �. Thus, the relations between
these quantities in Fourier space are linear.

In Fourier space, they can be expressed as:

W̃1 ( Æ✓) = ˜̂( Æ✓) cos (2q✓) , (2)

W̃2 ( Æ✓) = ˜̂( Æ✓) sin (2q✓) . (3)

where ⇠ denotes the Fourier transform, Æ✓ is the wave vector in
Fourier space, and q✓ is the polar angle. The convergence, ˜̂( Æ✓)
is defined as the weighted projected matter density contrast,
and can be expressed in terms of the Fourier transform of the
gravitational potential.

Using these relations in Eq. 2 and Eq. 3, we can express the
convergence as a convolution of the shear with an appropriate
kernel function Kaiser and Squires [57], and the convergence
can be expressed as:

˜̂
⇣
Æ✓
⌘
=


cos
�
2q✓1

�
sin

�
2q✓1

� �)
·

✓
W1 ( Æ✓)

W2 ( Æ✓)

◆
. (4)

It also represents the E-mode components of the convergence
map. Due to the scalar nature of the lensing potential �, weak
gravitational lensing produces only E modes in the shear field.
The KS inversion is an ideal estimator of the convergence map
in the absence of masks or holes in the data, but it can introduce
spurious features or artifacts when applied to realistic data sets
with incomplete sky coverage. In this paper, we modify the
above formalism and propose a new algorithm to deal with the
masked shear field.

B. Accurate Kappa Reconstruction Algorithm for masked
shear catalog (AKRA) algorithm

We first define a mask function <( Æ\) in real space, which is
equal to 1 for the observed region and 0 for the masked region.
Then the observed shear field can be expressed as:

W"
8 ( Æ\) = <( Æ\)W8 ( Æ\), (5)

where the mask function <( Æ\) and the shear field W8 ( Æ\) are
both defined in real space, and their shapes are (#\ , #\ ).

No. Method Specification
1 Generalized COBE W = [AtMA]−1AtM

2 Bin averaging W = [AtA]−1At

3 COBE W = [AtN−1A]−1AtN−1

4 Wiener 1 W = SAt[ASAt +N]−1

5 Wiener 2 W = [S−1 +AtN−1A]−1AtN−1

6 Saskatoon W = [ηS−1 +AtN−1A]−1AtN−1

7 TE96 W = ΛSAt[ASAt +N]−1, (WA)ii = 1
8 TE97 W = Λ[ηS−1 +AtN−1A]−1AtN−1, (WA)ii = 1
9 Maximum probability Nonlinear method if non-Gaussian

10 Maximum entropy Nonlinear method

Table 1: Map-making methods

be augmented to include the brightness of various foreground components
in each pixel, and the matrix A would encompass the assumptions made
about their frequency dependence.

Without loss of generality, we can take the noise vector to have zero
mean, i.e., 〈n〉 = 0, so the noise covariance matrix is

N ≡ 〈nnt〉. (2)

In some of the methods described below (methods 4-9), the following prior
assumptions are made about the map: it is assumed to be a realization of
random vector with zero mean, i.e., 〈x〉 = 0, with some known covariance
matrix

S ≡ 〈xxt〉 (3)

and uncorrelated with the noise, i.e., 〈nxt〉 = 0.

2.2 Ten mapping methods

We will now summarize some map-making methods that have recently been
used or advocated in the CMB context. All linear methods can clearly be
written in the form

x̃ = Wy, (4)

where x̃ denotes the estimate of the map x and W is some m × n matrix
that specifies the method. Table 1 shows the choices of W that define the
linear methods we will discuss.
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operation between shear and mask in Fourier space can be
simplified to a single matrix multiplication operation.

Substitute Eq. 2 and Eq. 3 into the above Eq. 8, we can get
the masked shear field in Fourier space:

W̃<1 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
,

W̃<2 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
sin

�
2q✓1

�
.

(9)

Here the ˜̂
⇣
Æ✓1

⌘
is a vector with length #2

✓ , and ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
means multiplying each element of the vector ˜̂

⇣
Æ✓1

⌘
by

cos
�
2q✓1

�
. Then we can rewrite the above equation as:

W̃<1 ( Æ!)

W̃<2 ( Æ!)

�
=


cos
�
2q✓1

�
M

sin
�
2q✓1

�
M

�
· ˜̂

⇣
Æ✓1

⌘
, (10)

where cos
�
2q✓1

�
and sin

�
2q✓1

�
are both vectors with length

#2
✓ , so we can multiply each element in cos

�
2q✓1

�
(or

sin
�
2q✓1

�
) with each row of the matrix M, and then stack

the results together to form a new matrix A with a shape of
2#2

✓ ⇥ #2
✓ .

In Eq. 10, the data from shear maps are linearly related to
the convergence field. Grouping the two components of the
shear field together, we can get a new vector W̃< ( Æ!) with length
2#2

✓ , and then we can rewrite Eq. 10 as:

� = A + n. (11)

With a total of 2#2
✓ observation points from �, A is a

2#2
✓ ⇥ #2

✓ matrix,  is a #2
✓ -element vector with each element

corresponding to each Fourier mode of the real convergence
map. Meanwhile, the noise vector, n, has dimensions of 2#2

✓ .
For a Gaussian random noise model, with hni = 0 and vari-
ance of f2

n, the covariance matrix for the noise is given by
N ⌘

⌦
nnT↵. Here we set N�1 = I for noise-free case.

To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘


⌘ P,

(13)

where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.

Minimum variance estimate:
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operation between shear and mask in Fourier space can be
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the statistics of this estimator, the mean and covariance can be
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Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
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minimize the numerical error. The PSF matrix is

P =
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In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘


⌘ P,

(13)

where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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operation between shear and mask in Fourier space can be
simplified to a single matrix multiplication operation.

Substitute Eq. 2 and Eq. 3 into the above Eq. 8, we can get
the masked shear field in Fourier space:
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⇣
Æ✓1

⌘
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2q✓1

�
,
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⌘
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2q✓1

�
.

(9)

Here the ˜̂
⇣
Æ✓1

⌘
is a vector with length #2

✓ , and ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
means multiplying each element of the vector ˜̂

⇣
Æ✓1

⌘
by

cos
�
2q✓1

�
. Then we can rewrite the above equation as:

W̃<1 ( Æ!)

W̃<2 ( Æ!)
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⌘
, (10)

where cos
�
2q✓1

�
and sin

�
2q✓1

�
are both vectors with length

#2
✓ , so we can multiply each element in cos

�
2q✓1

�
(or

sin
�
2q✓1

�
) with each row of the matrix M, and then stack

the results together to form a new matrix A with a shape of
2#2

✓ ⇥ #2
✓ .

In Eq. 10, the data from shear maps are linearly related to
the convergence field. Grouping the two components of the
shear field together, we can get a new vector W̃< ( Æ!) with length
2#2

✓ , and then we can rewrite Eq. 10 as:

� = A + n. (11)

With a total of 2#2
✓ observation points from �, A is a

2#2
✓ ⇥ #2

✓ matrix,  is a #2
✓ -element vector with each element

corresponding to each Fourier mode of the real convergence
map. Meanwhile, the noise vector, n, has dimensions of 2#2

✓ .
For a Gaussian random noise model, with hni = 0 and vari-
ance of f2

n, the covariance matrix for the noise is given by
N ⌘

⌦
nnT↵. Here we set N�1 = I for noise-free case.

To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘


⌘ P,

(13)

where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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operation between shear and mask in Fourier space can be
simplified to a single matrix multiplication operation.

Substitute Eq. 2 and Eq. 3 into the above Eq. 8, we can get
the masked shear field in Fourier space:

W̃<1 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
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,

W̃<2 ( Æ!) = M · ˜̂
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⌘
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.

(9)

Here the ˜̂
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Æ✓1

⌘
is a vector with length #2

✓ , and ˜̂
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⌘
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means multiplying each element of the vector ˜̂

⇣
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⌘
by
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�
. Then we can rewrite the above equation as:
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W̃<1 ( Æ!)
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=

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M
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⌘
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where cos
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and sin
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are both vectors with length
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✓ , so we can multiply each element in cos
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2q✓1
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(or
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2q✓1
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) with each row of the matrix M, and then stack

the results together to form a new matrix A with a shape of
2#2

✓ ⇥ #2
✓ .

In Eq. 10, the data from shear maps are linearly related to
the convergence field. Grouping the two components of the
shear field together, we can get a new vector W̃< ( Æ!) with length
2#2

✓ , and then we can rewrite Eq. 10 as:

� = A + n. (11)

With a total of 2#2
✓ observation points from �, A is a

2#2
✓ ⇥ #2

✓ matrix,  is a #2
✓ -element vector with each element

corresponding to each Fourier mode of the real convergence
map. Meanwhile, the noise vector, n, has dimensions of 2#2

✓ .
For a Gaussian random noise model, with hni = 0 and vari-
ance of f2

n, the covariance matrix for the noise is given by
N ⌘

⌦
nnT↵. Here we set N�1 = I for noise-free case.

To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘


⌘ P,

(13)

where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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TABLE I. The physical quantities and related symbols involved in reconstruction process.

Quantity Symbol Description
Shear W8 (\) (Sec. II A) Two components W1 and W2 of the shear on the flat sky.
Shear in Fourier space W8 ( Æ✓) (Sec. II A) The Fourier transform of the shear.
Convergence ^(\) (Sec. II A) The convergence on the flat sky.
Polar angle q✓ (Sec. II A) The polar angle of the Fourier mode Æ✓.
Fourier mode Æ✓ (Sec. II A) The Fourier mode.
E-mode ⇢ ( Æ✓) (Sec. II A) The E-modes components.
B-mode ⌫( Æ✓) (Sec. II A) The B-modes components.
Unmasked convergence in Fourer space ˜̂( Æ✓) (Sec. II B) The Fourier transform of the unmasked convergence.
Mask function <(\) (Sec. II B) The mask on the flat sky.
Masked shear W<8 (\) (Sec. II B) The masked shear on the flat sky.
Masked shear in Fourier space W̃<8 ( Æ!) (Sec. II B) The Fourier transform of the masked shear.
Convolution kernel from mask M (Sec. II B) The convolution kernel from mask with shape (#2

✓ , #
2
✓ ).

Observed shear vector � (Sec. II B) The observed shear vector, with length 2#2
✓ .

Real convergence vector  (Sec. II B) The real convergence vector, with length #2
✓ .

Noise vector n (Sec. II B) The noise vector, with length 2#2
✓ .

Convolution kernel matrix
The kernel matrix transforms the convolution operation into a matrix multiplica-
tion operation with shape (2#2

✓ , #
2
✓ ). It includes information from the mask as

well as cos(2q✓ ) and sin(2q✓ ) terms.
Hermitian conjugate of a matrix Denotes the Hermitian conjugate of matrix A.
Inverse of a matrix Denotes the inverse of matrix A.
Pseudo-inverse of a matrix Denotes the Penrose-Moore pseudo-invers of matrix A.
Regularization matrix The regularization matrix, which is proportional to the identity matrix.
Reconstructed convergence Denotes the reconstructed convergence in Fourier space.
Reconstructed convergence Denotes the reconstructed convergence map in real space.

Slope B (Sec. III)
The slope of a linear regression model, which is used to estimate the distribution
of true (^true) and reconstructed (^rec) convergence map in kernel density estima-
te plot.

Pearson correlation coefficient (PCC) d (Sec. III) The PCC between ^true and ^rec.

The localization measure ! (Sec. III) A quantitative assessment of the degree to which the residuals are concentrated
within the masked regions.

Cross correlation coefficient A (✓) (Sec. III) The cross correlation coefficient between ^true and ^rec.

Then in Fourier space, the shear field can be expressed as
the convolution of the mask function and the true shear field:

W̃<8 ( Æ!) =
π

W8 ( Æ\)<( Æ\)4�8
Æ! · Æ\32\

=
π
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(2c)2

π
32✓2W̃8
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⌘
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⇣
Æ✓2

⌘
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⇣
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⌘

/

π
32 Æ✓1W̃8

⇣
Æ✓1

⌘
<̃

⇣
Æ! � Æ✓1

⌘
.

(6)
Here, W̃8

⇣
Æ✓1

⌘
and <̃

⇣
Æ✓2

⌘
are the Fourier transforms of the

true shear and mask functions respectively, and its shape is
(#✓ , #✓). This equation reveals that the observed shear field
is a convolution of the true shear field and mask function.
The Fourier space convolution operation is a crucial step in
reconstructing the convergence field from the shear map. Then

the integral can be discretized as a sum over Fourier modes,

W̃<8 ( Æ!) =
#2
✓’

Æ✓1=1

W̃8
⇣
Æ✓1

⌘
<̃

⇣
Æ! � Æ✓1

⌘
�⌦

=
#2
✓’

Æ✓1=1

W̃8
⇣
Æ✓1

⌘
"

⇣
Æ✓1

⌘
�⌦.

(7)

Here �⌦ is the pixel area in Fourier space, "
⇣
Æ✓1

⌘
=

<̃
⇣
Æ! � Æ✓1

⌘
is the convolution kernel fuction from the mask,

and its shape is (#2
✓ , #

2
✓ ).

Eq. 7 can be expressed reasonably well in the form of matrix
multiplication:

W̃<1 ( Æ!) = M · W̃1 ( Æ✓1), W̃<2 ( Æ!) = M · W̃2 ( Æ✓1). (8)

In Eq. 8, the true shear field W8 ( Æ✓1) can be reshaped as a vector
with length #2

✓ , whereas the matrix M is a convolution kernel
with a shape of (#2

✓ , #
2
✓ ). Using this equation, the convolution

A 
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operation between shear and mask in Fourier space can be
simplified to a single matrix multiplication operation.

Substitute Eq. 2 and Eq. 3 into the above Eq. 8, we can get
the masked shear field in Fourier space:

W̃<1 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
,

W̃<2 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
sin

�
2q✓1

�
.

(9)

Here the ˜̂
⇣
Æ✓1

⌘
is a vector with length #2

✓ , and ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
means multiplying each element of the vector ˜̂

⇣
Æ✓1

⌘
by

cos
�
2q✓1

�
. Then we can rewrite the above equation as:

W̃<1 ( Æ!)

W̃<2 ( Æ!)

�
=
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cos
�
2q✓1

�
M

sin
�
2q✓1

�
M

�
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Æ✓1

⌘
, (10)

where cos
�
2q✓1

�
and sin

�
2q✓1

�
are both vectors with length

#2
✓ , so we can multiply each element in cos

�
2q✓1

�
(or

sin
�
2q✓1

�
) with each row of the matrix M, and then stack

the results together to form a new matrix A with a shape of
2#2

✓ ⇥ #2
✓ .

In Eq. 10, the data from shear maps are linearly related to
the convergence field. Grouping the two components of the
shear field together, we can get a new vector W̃< ( Æ!) with length
2#2

✓ , and then we can rewrite Eq. 10 as:

� = A + n. (11)

With a total of 2#2
✓ observation points from �, A is a

2#2
✓ ⇥ #2

✓ matrix,  is a #2
✓ -element vector with each element

corresponding to each Fourier mode of the real convergence
map. Meanwhile, the noise vector, n, has dimensions of 2#2

✓ .
For a Gaussian random noise model, with hni = 0 and vari-
ance of f2

n, the covariance matrix for the noise is given by
N ⌘

⌦
nnT↵. Here we set N�1 = I for noise-free case.

To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘


⌘ P,

(13)

where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.

Assumption: 

1. flat sky, 

2. noise-free, 

3. periodic boundary.

C ≡ ⟨( ̂κ − κ)( ̂κ − κ)T⟩ = PDT

R = εI ensures numerical stability
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The mask is generated from the real observation of 
the DESI imaging surveys DR8.

Mask from Observation

KS will result in a poor estimate of  masked regions and 

near the edge of the footprintMask used in simulations

The masks in panels B1 to B5 have 
masked pixel rates of 10%, 20%, 30%, 

40%, and 50%.

Random mask

Circular mask with same rate (10%) of 
masked pixels.

Circular mask



AKRA: Accurate Kappa Reconstruction Algorithm 11

Simulation A: Mask from real observation

The mask is generated from the real 
observation of the DESI imaging 

surveys DR8.

Three patches of sky with 
a higher angular resolution 
of 6.7 arcmin (HEALPix 

Nside = 512). The 
masked pixels are 

denoted in black and the 
unmasked pixels in 

white.

Each of the three patches of sky has 
175 pixels, with a side length of 20 .∘
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Simulation 1: Mask from real observation

Reconstructed 𝜅 map 
from AKRA

Reconstructed 𝜅 map 
from KS

The residual maps normalized by r.m.s. of the true signal
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Simulation A: results for unmasked pixels

7

5. Modification of convolution kernel matrix: Multiply
cos(2q✓) and sin(2q✓) terms into the matrix M, and then
we can get the convolution kernel matrix A in Eq. 11.

6. Solving the linear equation: Calculate the estimator
̂ by Eq.17, and then we obtain the reconstructed con-
vergence map in real space using an inverse Fourier
transform.

To further investigate the quality of the reconstructed maps
in a more quantitative manner, we list a few commonly used
statistics.

• The accuracy of the auto power spectrum ⇠rec
✓ of the

reconstructed convergence ^rec, quantified by the ratio
⇠rec
✓ /⇠ true

✓ as a function of multipole ✓. Here ⇠ true
✓ is the

auto power spectrum of the true map. This is one of the
key measures of map quality for the purpose of weak
lensing cosmology.

• The cross-correlation coefficient A✓ as a function of mul-
tipole ✓.

A✓ ⌘
⇠rec�true (✓)p
⇠rec (✓)⇠ true (✓)

. (19)

Here ⇠rec�true (✓) is the cross-power spectrum between
the reconstructed and true convergence maps. A✓ quan-
tifies the accuracy of reconstructing the phase. It is also
a key measure of map quality. A✓ < 1 will cause bias
of amplitude of O(1� A✓) in cross-correlations between
^rec and other large scale structure fields. Unlike the er-
ror in the amplitude which can be corrected at map level
by scaling each ✓ mode with

p
⇠rec/⇠ true estimated from

simulations, errors in the phase (A✓ < 1) can not be cor-
rected at map level. Therefore the requirement of A✓ = 1
is often more challenging.

• The ^rec-^true scatter plot, also called Kernel Density
Estimation (KDE). The plot is a non-parametric way to
estimate the probability density function of a random
variable, which is used to compare the distribution of
true convergence map and reconstructed convergence
map. We also define the slope B as the bestfit to ^rec-
^true by ^rec = B^true. The solution for B is

B =
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rec
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true
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By examining B of the ^rec-^true scatter plot, we can
discern the level of similarity between the two distri-
butions. A slope of B = 1 indicates the reconstructed
convergence field exactly matches the true convergence
distribution.

• The Pearson correlation coefficient (PCC). The PCC is
a measure of the linear correlation between two conver-
gence fields, which is defined as:

d =

⌦
^true^rec↵q⌦

(^true)2
↵q⌦

(^rec)2
↵

The PCC is used to measure the similarity between true
and reconstructed convergence map. The PCC ranges
from -1 to 1. The closer the PCC is to 1, the more similar
the two variables are.

• The localization measure, denoted as !, quantifies the
extent to which the residuals are localized within the
masked regions:
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Õ
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p

2/cf^ true ) (#pix (1 � 5mask))
. (21)

Here�8 ⌘ ^rec
8 �^true

8 . If Gaussian h|^ |i =
p

2/cf^ . #pix
is the total number of pixels and 5mask is the fraction of
masked regions. Ideally, when < = 1, � = 0. But since
the shear-convergence relaiton is non-local in real space,
masks in the shear catalog impact the reconstruction of
convergence in the unmasked regions. Namely ! < 0.
The value of ! then serves as a measure for the local-
ization of residuals, indicating to what extent the shear
mask contaminates the convergence reconstruction in
the masked regions. ! ⌧ 1 is desirable.

We simulate the reconstruction of convergence maps from
shear maps using a flat sky, noise-free, and periodic model.
In this study, we aim to discuss three types of masks that
have been utilized in our simulation. The first one is obtained
from real observations (see Fig. 2), the second type of mask is
randomly generated (see Fig. 10) with varying mask fractions,
and the third one is a mask with a specific shape and fixed mask
fraction (see Fig. 15).

A. Mask from real observation

We use 5.18 million galaxies at redshift bin 0.8 < I <
1.0, which covering ⇠ 13,000 deg2. To consider the real
survey geometry, we generate the binary mask from the real
observation of DESI imaging surveys DR8 with nside = 1024.
The mask is 1 when if are shear galaxies located at the pixel,
otherwise it is 0. Then downgrade the resolution to nside =
512. The downgraded mask is 1 when pixel values � 0.5,
otherwise is 0, as depicted in Fig. 1.

The AKRA method described in this paper will focus on a
specific region of the sky. As an example, we selected three
particular patches from real observation mask in Fig. 1,
shown in Fig. 2. The masked pixels are denoted in black and
the unmasked pixels in white. The masked pixels in position
1 (A1) are randomly distributed, whereas the mask in position
2 (A2) is more concentrated and results in a small area full of
masked pixels. The mask in position 3 (A3) is a combination
of the type of mask in position 1 and 2, with distinct borders.
Each of the three patches of sky has 1752 pixels, with a side
length of 20�.

In this study, we followed the procedures outlined in the
prior section to acquire the masked shear field and reconstruct
the convergence map. Firstly, in steps 1 and 2, we generated
the shear map W1 ( Æ\) and W2 ( Æ\) by converting the convergence
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cos(2q✓) and sin(2q✓) terms into the matrix M, and then
we can get the convolution kernel matrix A in Eq. 11.

6. Solving the linear equation: Calculate the estimator
̂ by Eq.17, and then we obtain the reconstructed con-
vergence map in real space using an inverse Fourier
transform.

To further investigate the quality of the reconstructed maps
in a more quantitative manner, we list a few commonly used
statistics.
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✓ of the
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✓ as a function of multipole ✓. Here ⇠ true
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auto power spectrum of the true map. This is one of the
key measures of map quality for the purpose of weak
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• The cross-correlation coefficient A✓ as a function of mul-
tipole ✓.

A✓ ⌘
⇠rec�true (✓)p
⇠rec (✓)⇠ true (✓)

. (19)
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and the third one is a mask with a specific shape and fixed mask
fraction (see Fig. 15).
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1.0, which covering ⇠ 13,000 deg2. To consider the real
survey geometry, we generate the binary mask from the real
observation of DESI imaging surveys DR8 with nside = 1024.
The mask is 1 when if are shear galaxies located at the pixel,
otherwise it is 0. Then downgrade the resolution to nside =
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otherwise is 0, as depicted in Fig. 1.

The AKRA method described in this paper will focus on a
specific region of the sky. As an example, we selected three
particular patches from real observation mask in Fig. 1,
shown in Fig. 2. The masked pixels are denoted in black and
the unmasked pixels in white. The masked pixels in position
1 (A1) are randomly distributed, whereas the mask in position
2 (A2) is more concentrated and results in a small area full of
masked pixels. The mask in position 3 (A3) is a combination
of the type of mask in position 1 and 2, with distinct borders.
Each of the three patches of sky has 1752 pixels, with a side
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distribution.
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mask contaminates the convergence reconstruction in
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In this study, we aim to discuss three types of masks that
have been utilized in our simulation. The first one is obtained
from real observations (see Fig. 2), the second type of mask is
randomly generated (see Fig. 10) with varying mask fractions,
and the third one is a mask with a specific shape and fixed mask
fraction (see Fig. 15).

A. Mask from real observation

We use 5.18 million galaxies at redshift bin 0.8 < I <
1.0, which covering ⇠ 13,000 deg2. To consider the real
survey geometry, we generate the binary mask from the real
observation of DESI imaging surveys DR8 with nside = 1024.
The mask is 1 when if are shear galaxies located at the pixel,
otherwise it is 0. Then downgrade the resolution to nside =
512. The downgraded mask is 1 when pixel values � 0.5,
otherwise is 0, as depicted in Fig. 1.

The AKRA method described in this paper will focus on a
specific region of the sky. As an example, we selected three
particular patches from real observation mask in Fig. 1,
shown in Fig. 2. The masked pixels are denoted in black and
the unmasked pixels in white. The masked pixels in position
1 (A1) are randomly distributed, whereas the mask in position
2 (A2) is more concentrated and results in a small area full of
masked pixels. The mask in position 3 (A3) is a combination
of the type of mask in position 1 and 2, with distinct borders.
Each of the three patches of sky has 1752 pixels, with a side
length of 20�.
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operation between shear and mask in Fourier space can be
simplified to a single matrix multiplication operation.

Substitute Eq. 2 and Eq. 3 into the above Eq. 8, we can get
the masked shear field in Fourier space:

W̃<1 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
,

W̃<2 ( Æ!) = M · ˜̂
⇣
Æ✓1

⌘
sin

�
2q✓1

�
.

(9)

Here the ˜̂
⇣
Æ✓1

⌘
is a vector with length #2

✓ , and ˜̂
⇣
Æ✓1

⌘
cos

�
2q✓1

�
means multiplying each element of the vector ˜̂

⇣
Æ✓1

⌘
by

cos
�
2q✓1

�
. Then we can rewrite the above equation as:

W̃<1 ( Æ!)

W̃<2 ( Æ!)

�
=


cos
�
2q✓1

�
M

sin
�
2q✓1

�
M

�
· ˜̂

⇣
Æ✓1

⌘
, (10)

where cos
�
2q✓1

�
and sin

�
2q✓1

�
are both vectors with length

#2
✓ , so we can multiply each element in cos

�
2q✓1

�
(or

sin
�
2q✓1

�
) with each row of the matrix M, and then stack

the results together to form a new matrix A with a shape of
2#2

✓ ⇥ #2
✓ .

In Eq. 10, the data from shear maps are linearly related to
the convergence field. Grouping the two components of the
shear field together, we can get a new vector W̃< ( Æ!) with length
2#2

✓ , and then we can rewrite Eq. 10 as:

� = A + n. (11)

With a total of 2#2
✓ observation points from �, A is a

2#2
✓ ⇥ #2

✓ matrix,  is a #2
✓ -element vector with each element

corresponding to each Fourier mode of the real convergence
map. Meanwhile, the noise vector, n, has dimensions of 2#2

✓ .
For a Gaussian random noise model, with hni = 0 and vari-
ance of f2

n, the covariance matrix for the noise is given by
N ⌘

⌦
nnT↵. Here we set N�1 = I for noise-free case.

To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘


⌘ P,

(13)

where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.

Deconvolution matrix: 

ideal case:

ill-posed case: D = (ATN−1A + R)−1
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In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
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FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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shear field together, we can get a new vector W̃< ( Æ!) with length
2#2

✓ , and then we can rewrite Eq. 10 as:

� = A + n. (11)

With a total of 2#2
✓ observation points from �, A is a

2#2
✓ ⇥ #2

✓ matrix,  is a #2
✓ -element vector with each element

corresponding to each Fourier mode of the real convergence
map. Meanwhile, the noise vector, n, has dimensions of 2#2

✓ .
For a Gaussian random noise model, with hni = 0 and vari-
ance of f2

n, the covariance matrix for the noise is given by
N ⌘

⌦
nnT↵. Here we set N�1 = I for noise-free case.

To optimally estimate , we use the minimum variance
estimator [75]:

̂ = DATN�1� . (12)

where D is some invertible normalization matrix. To analyze
the statistics of this estimator, the mean and covariance can be
calculated. Since the thermal noise has hni = 0, we can write
the ensemble average of the estimator as:

h̂i =
⌦
DATN�1�

↵
= D

⇣
ATN�1A

⌘
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⌘ P,
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where P = D
�
ATN�1A

�
is the matrix-valued PSF.

The covariance of the estimator is

C ⌘
⌦
(�̂ � �) (�̂ � �)C

↵
= PDT. (14)

More generally the estimators of  can be formed with
different choices of D. If we wanted an unbiased estimator

of the sky, we should choose D =
�
ATN�1A

��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
⇣
ATN�1A

⌘�1
. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):

D ⇠

⇣
ATN�1A

⌘+
. (16)

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. 12 as follows:

̂R =
⇣
ATN�1A + R

⌘�1
ATN�1� . (17)

We set the deconvolution matrix D =
�
ATN�1A + R

��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
ATN�1A + R

⌘�1 ⇣
ATN�1A

⌘
. (18)

In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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��1 to obtain
idealized PSF P = I. Then Eq. 14 becomes

C = PDT =
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. (15)

Then the inverse covariance matrix is C�1 = ATN�1A. This
implies that A†N�1A measures the information content in our
maps. In Sec. III B, we will explore the structure of this matrix
for different cases of mask.

In practice, inverse problems related with imaging are often
ill-posed. For example, in the case of interferometric data
reconstruction, the matrix ATN�1A is often numerically non-
invertible due to the instrument’s insensitivity to certain linear
combinations of the sky. Shi et al. [79] proposed to use a
pseudo-inverse matrix (the Moore-Penrose pseudo-inverse):
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matrix R could be added in Eq. 12 as follows:
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We set the deconvolution matrix D =
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��1, where
R is a diagonal regularization matrix with the same size as
ATN�1A. We choose R = YI, with Y being a small number that
depends on ATN�1A and ensures numerical stability. Since
the maximum eigenvalue of ATN�1A is 1, we set Y = 10�4 to
minimize the numerical error. The PSF matrix is

P =
⇣
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In this paper, we utilize the method of regularization, as
presented in Eq. 17, to calculate the estimator for . Eq. 17
can also be extended to include a prior model with known
uncertainties [76]. However, we do not assume any prior
model for the convergence map in this paper to obtain an
unbiased estimator.

FIG. 1. The mask is generated from real observations. The region in
red box represents three specific masked region shown in Fig. 2.
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FIG. 14. Results for random masks. Top: power spectrum ratio for 100 realizations (unmasked pixels). The blue and red regions represent
the 1f confidence interval. Bottom: cross-correlation coefficient between the reconstructed and the true convergence map. Here we did not
correct the bias in the power spectrum obtained from the KS method, resulting from varying mask rates, as the impact on different scales is not
uniform. AKRA accurately recovers the true power spectrum in the simulation, with a power spectrum ratio and cross-correlation coefficient
in all cases around 5% and 1 � A✓ . 5% respectively.

gence (^rec-^true) for the unmasked and masked pixels sepa-
rately in Figs. 8 and 9. For the unmasked pixels, AKRA pro-
duces ^ maps that are almost identical to the input ^ map for all
cases. In contrast, the KS method exhibits noticeable residuals
even for the unmasked pixels. In the case of masked pixels,
the AKRA method produces accurate ^ maps for A1 cases
and demonstrates overall robustness in A2 and A3 cases, apart
from specific regions with clustered masked pixels. However,
the KS method exhibits substantial residuals across all cases.

B. Random mask

The random mask is obtained by selecting pixels randomly
from <(\) and converting them to 0. The five panels in Fig.
10 illustrate the masks with different masked pixel rates of
10%, 20%, 30%, 40%, and 50%, respectively.

In this section, we provide a detailed analysis of the ma-
trix (ATN�1A)

�1. This matrix has two important mean-
ings. First, this matrix approximates the inverse of the co-
variance matrix of the maximum-likelihood estimate. The
matrix

�
ATN�1A

��1 contains all information about the mask.
However, we have made the implicit assumption that we did
not account for noise. This assumption implies that we cal-
culate the inverse covariance matrix as

�
ATA

��1, neglecting
the contribution of noise. When noise is uncorrelated across
pixels, the inverse noise matrix, N�1, becomes diagonal and
can also be ignored. We anticipate that the smallest covariance
will be associated with the greatest inverse covariance.

Secondly, the matrix
�
ATN�1A

��1 is the deconvolution ma-
trix of the estimate in Eq. 12. The eigendecomposition of the
deconvolution matrix is given by

⇣
ATN�1A

⌘�1
= V⇤VT,

where V is a matrix whose columns are the eigenvectors and ⇤
is a diagonal matrix whose entries are the corresponding eigen-
values. The eigendecomposition can provide helpful insights
into the behavior of the deconvolution matrix. For instance,
the eigenvalues deermine the extent to which different compo-
nents of the input signal are amplified or attenuated during the
deconvolution process.

In Fig. 11, we plotted the eigenvalue spectra of the ma-
trix (ATN�1A) for five different mask maps. Our analysis of
the eigenvalue spectra revealed a consistent trend: as the per-
centage of masked pixels increased from type B1 to B5, the
amplitude of the eigenvalue spectra decreased. This decrease
in amplitude indicates an increase in covariance. However,
despite the variation in the eigenvalue spectra, the number of
independent modes remained approximately equal across the
different mask maps. This number of independent modes is
determined by the two observables W<1 (\) and W<2 (\), which
are the shear components measured within the masked region.
It is worth noting that the two observables W<1 (\) and W<2 (\)
are non-local quantities that can exhibit correlations with each
other. Therefore, in the presence of a mask with 50% cover-
age, the number of independent modes is approximately equal
to twice the number of unmasked pixels. This indicates that,
despite the masking, there is still a substantial amount of inde-
pendent information available for the reconstruction process,
captured by the two observables within the unmasked region.

We also calculate the PSF matrix in Eq. 18. Figs. 12 and 13
show the performance of a PSF matrix (Eq. 18) for different
mask maps. A PSF matrix serves as a tool to assess the
quality of ^ map reconstruction from W1 and W2 after applying
a given mask. Fig. 12 displays the diagonal elements of the
PSF matrix, representing the self-contribution of each pixel to
its reconstruction. In an ideal scenario, these values should
be 1, signifying perfect reconstruction of the pixel. Fig. 13
presents the ratio between the squared off-diagonal elements
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Simulation A: results for all pixels

In A1 case, all pixels can be recovered accurately 


in AKRA!
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Conclusion

NON-LOCAL •Assumption: flat sky, noise-free, periodic boundary 
conditions.


•Various mask shapes:  is accurate to 1% or better; 
 (for masked pixels)


•Future: curved sky, inhomogeneous shape measurement 
noise …

Cκ
1 − rℓ ≲ 1 %

Why masked pixels can be recovered in AKRA?

Non-local relation 
between shear and convergence.



Thank you for your time.

https://arxiv.org/abs/2311.00316
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Simulation B: random mask (results for unmasked pixels)

 is accurate to 1% or better;

  (for masked pixels)

Cκ
1 − rℓ ≲ 1 %
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Simulation B: random mask (results for all pixels)

Unmasked pixels can 

also be recovered in AKAR.
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Simulation C: circular mask with same rate (10%) of masked pixels

(results for unmasked pixels)
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Eigenvalues of 

We anticipate that the smallest covariance will be 
associated with the greatest inverse covariance.

(B1) > (B2) > (B3) > (B4)

attenuated

unchanged
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Simulation B: random mask

lost

attenuated

unchanged

lost
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Gravitational lensing today

Gravitational lensing in the Abell 2218 galaxy 
cluster, imaged by Hubble Space Telescope. 


[Image credit : NASA/ESA]


