

AKRA: Accurate Kappa Reconstruction Algorithm for masked shear catalog

Presenter: Shi Yuan (Postdoc at SJTU)

1-Nov-2023

Method

Conclusion

Kaiser-Squire (KS) method

Real Space

Fourier Space

$$\kappa = \frac{1}{2} (\psi_{11} + \psi_{22})$$

$$\gamma_1 = \frac{1}{2} (\psi_{11} - \psi_{22})$$

$$\gamma_2 = \psi_{12}$$

$$\gamma_2 = \psi_{12}$$

$$\gamma_2 = -\frac{1}{2} (k_1^2 + k_2^2) \tilde{\psi}$$

$$\gamma_1 = -\frac{1}{2} (k_1^2 - k_2^2) \tilde{\psi}$$

$$\gamma_2 = -k_1 k_2 \tilde{\psi}$$

$$\begin{bmatrix}\gamma_1(\vec{\ell})\\\gamma_2(\vec{\ell})\end{bmatrix} = \begin{bmatrix}\cos(2\phi_{\ell_1})\\\sin(2\phi_{\ell_1})\end{bmatrix} \cdot \tilde{\kappa}(\vec{\ell})$$

$$Using: \begin{bmatrix}\cos(2\phi_{\ell_1})\\\sin(2\phi_{\ell_1})\end{bmatrix} \cdot \begin{bmatrix}\cos(2\phi_{\ell_1})\\\sin(2\phi_{\ell_1})\end{bmatrix}^T = 1$$

$$\tilde{\kappa}(\vec{\ell}) = \begin{bmatrix}\cos(2\phi_{\ell_1})\\\sin(2\phi_{\ell_1})\end{bmatrix}^T \cdot \begin{pmatrix}\gamma_1(\vec{\ell})\\\gamma_2(\vec{\ell})\end{pmatrix} \twoheadrightarrow \tilde{E}(\ell)$$

$$\tilde{B}(\vec{\ell}) = \tilde{\gamma}_1(\vec{\ell})\sin(2\phi_{\ell_1}) - \tilde{\gamma}_2(\vec{\ell})\cos(2\phi_{\ell}) = 0$$

AKRA: Accurate Kappa Reconstruction Algorithm

Kaiser-Squire (KS) method

AKRA: Accurate Kappa Reconstruction Algorithm

Real Space **Fourier Space** Mask function $m(\theta)$ $\tilde{\gamma}_i^m(\vec{L}) = \int \gamma_1(\vec{\theta}) m(\vec{\theta}) e^{-i\vec{L}\cdot\vec{\theta}} d^2\theta$ $\gamma_i^M(\vec{\theta}) = m(\vec{\theta})\gamma_i(\vec{\theta})$ $\Rightarrow \qquad = \int \frac{d^2 \ell_1}{(2\pi)^2} \int d^2 \ell_2 \tilde{\gamma}_i \left(\vec{\ell}_1\right) \tilde{m} \left(\vec{\ell}_2\right) \delta^D \left(\vec{\ell}_1 + \vec{\ell}_2 - \vec{L}\right)$ $ilde{(ilde{f}g)} = ilde{f} * ilde{g} \propto \int d^2 ec{\ell_1} ilde{\gamma_i} \left(ec{\ell_1} ight) ilde{m} \left(ec{L} - ec{\ell_1} ight)$ $\tilde{\gamma}_{i}^{m}(\vec{L}) = \sum_{i=1}^{N_{\ell}^{2}} \tilde{\gamma}_{i}\left(\vec{\ell}_{1}\right) \tilde{m}\left(\vec{L} - \vec{\ell}_{1}\right) \Delta\Omega$ $= \sum_{i=1}^{N_{\ell}^2} \tilde{\gamma}_i \left(\vec{\ell}_1\right) M\left(\vec{\ell}_1\right) \Delta \Omega$ $\vec{\ell}_1 = 1$ $ilde{\gamma}_1^m(ec{L}) = \mathbf{M} \cdot ilde{\gamma}_1\left(ec{\ell}_1 ight), \quad ilde{\gamma}_2^m(ec{L}) = \mathbf{M} \cdot ilde{\gamma}_2\left(ec{\ell}_1 ight)$ $N^2_{\mathscr{O}}$ N^2_{a} $(N_{\ell}^{2}, N_{\ell}^{2})$ AKRA: Accurate Kappa Reconstruction Algorithm Method Simulation 7 Introduction Conclusion

AKRA

AKRA

Conclusion

8

AKRA

$$\gamma = \mathbf{A}\kappa + n$$

The minimum variance estimator:

$$\hat{\boldsymbol{\kappa}} = \mathbf{D}\mathbf{A}^{\mathrm{T}}\mathbf{N}^{-1}\boldsymbol{\gamma}.$$

The ensemble average of the estimator:

The covariance of the estimator:

AKRA: A

$$\mathbf{C} \equiv \left\langle (\hat{\kappa} - \kappa)(\hat{\kappa} - \kappa)^T \right\rangle = \mathbf{P}\mathbf{D}^T$$

deal case:
$$\mathbf{D} = (\mathbf{A}^{\mathrm{T}} \mathbf{N}^{-1} \mathbf{A})^{-1}$$

 $\mathbf{C} = \mathbf{P} \mathbf{D}^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}} \mathbf{N}^{-1} \mathbf{A})^{-1}$

$$\hat{\boldsymbol{\kappa}}^{\mathbf{R}} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{N}^{-1}\mathbf{A} + \mathbf{R}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{N}^{-1}\boldsymbol{\gamma}$$

- $\mathbf{R} = \varepsilon \mathbf{I}$ ensures numerical stability
- 1. Generation of convergence field
- 2. Generation of shear field
- **3.** Adding a mask $m(\theta)$ to the shear field $\gamma_1^M(\theta), \gamma_2^M(\theta)$
- 4. Generation of convolution kernel matrix $\mathbf{M} = M(\vec{\ell}_1)$
- 5. Modification of convolution kernel matrix: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} \cos\left(2\phi_{\ell_1}\right) \mathbf{M} \\ \sin\left(2\phi_{\ell_1}\right) \mathbf{M} \end{bmatrix}$$

6. Solving the linear equation

$$\begin{aligned} & -\kappa)(\hat{\kappa} - \kappa)^{T} \rangle = \mathbf{P}\mathbf{D}^{T} & \hat{\kappa}^{\mathbf{R}} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{N}^{-1}\mathbf{A} + \mathbf{R}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{N}^{-1}\boldsymbol{\gamma} & \text{Convolution kernel matrix} & \mathbf{A} \\ & = \left(\mathbf{A}^{\mathrm{T}}\mathbf{N}^{-1}\mathbf{A}\right)^{-1} & \text{Hermitian conjugate of a matrix} & \mathbf{A}^{\mathrm{T}} \\ & \mathrm{Inverse of a matrix} & \mathbf{A}^{\mathrm{T}} \\ & \mathrm{Inverse of a matrix} & \mathbf{A}^{\mathrm{T}} \\ & \mathrm{Pseudo-inverse of a matrix} & \mathbf{A}^{\mathrm{T}} \\ & \mathrm{Pseudo-inverse of a matrix} & \mathbf{A}^{\mathrm{T}} \\ & \mathrm{Regularization matrix} & \mathbf{R} \end{aligned}$$

Assumption: 1. flat sky, 2. noise-free, 3. periodic boundary.

Mask used in simulations

KS will result in a poor estimate of masked regions and near the edge of the footprint

Mask from Observation

The mask is generated from the real observation of the DESI imaging surveys DR8.

1.0

0.7

0.5

0.2

0.0

10

Random mask

The masks in panels B1 to B5 have masked pixel rates of 10%, 20%, 30%, 40%, and 50%.

Circular mask

Circular mask with same rate (10%) of masked pixels.

Introduction

Method

Simulation

Conclusion

Simulation A: Mask from real observation

AKRA: Accurate Kappa Reconstruction Algorithm

AKRA: Accurate Kappa Reconstruction Algorithm	14	Introduction	Method	Simulation	Conclusion

AKRA: Accurate Kappa Reconstruction Algorithm	16	Introduction	Method	Simulation	Conclusion

Conclusion

Why masked pixels can be recovered in AKRA?

- •Assumption: flat sky, noise-free, periodic boundary conditions.
- Various mask shapes: C_{κ} is accurate to 1% or better;
 - $1 r_{\ell} \lesssim 1 \%$ (for masked pixels)
- Future: curved sky, inhomogeneous shape measurement noise ...

https://arxiv.org/abs/2311.00316

[3] arXiv:2311.00316 [pdf, other]

Accurate Kappa Reconstruction Algorithm for masked shear catalog (AKRA) Yuan Shi, Pengjie Zhang, Zeyang Sun, Yihe Wang Comments: 17 pages, 21 figures, To be submitted. Comments are welcome! Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); Instrumentation and Methods for Astrophysics (astro-ph.IM) Simulation B: random mask (results for unmasked pixels)

Simulation B: random mask (results for all pixels)

(16)

(14)

Simulation B: random mask

24