The "true" radial distribution of satellite galaxies around MW-mass halos in LCDM

Dr Isabel Santos Santos

Institute for Computational Cosmology, Durham University

+ Carlos Frenk, John Helly, Shaun Cole, Julio Navarro et al

The 2nd Shanghai Assembly on Cosmology and Structure Formation - 1 November 2023

A puzzling observation

The observed radial distribution of satellite galaxies in the MW is more concentrated than predicted by cosmological simulations of MW-mass hosts.

A puzzling observation

The observed radial distribution of satellite galaxies in the MW is more concentrated than predicted by cosmological simulations of MW-mass hosts.

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

Few nearby subhalos in simulations: A problem for CDM?

Not favoured by galaxy formation theory, as is below the H-cooling limit (Vpeak~19 km/s; Okamoto&Frenko9)

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

Few nearby subhalos in simulations: A problem for CDM?

Not favoured by galaxy formation theory, as is below the H-cooling limit (Vpeak~19 km/s; Okamoto&Frenko9)

LCDM at infinite resolution: the NFW cusp is indestructible

- Recent works using idealized sims have studied tidal stripping in the limit of very high (infinite) resolution.
- Assuming LCDM (i.e. subhalo starts with an NFW density profile), subhalos lose mass, but never fully disrupt.

→ cosmological simulations suffer from artificial disruption of subhalos.

See also Han+16, He+23, Jiang+21, Mansfield+23

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

Tidal stripping evolution follows a "tidal track" (Errani&Navarro21, Peñarrubia+08,10)

This project

7

Aim: to correct for the artificially-disrupted subhalos and provide what would be the "true" abundance and radial distribution of satellite galaxies around a MW-mass galaxy in LCDM

Name	m _p	ϵ
	(M _☉)	(pc)
Aq-A-1	1.712×10^{3}	20.5
Aq-A-2	1.370×10^{4}	65.8
Aq-A-3	4.911×10^{4}	120.5
Aq-A-4	3.929×10^{5}	342.5
Aq-A-5	3.143×10^{6}	684.9

- Aq-A : DM-only MW-mass halo (~10¹² M_☉)
- Run at 5 resolution levels
- Bound subhalos defined by SUBFIND halo finder.
- Merger trees

Still I

Durham Semianalytical model for galaxy formation White&Frenk91, Kauffmann+93, Cole+2000, Lacey+2016

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham

- ◆ Semianalytical model: defines which subhalos form a galaxy.
- $V_{cut}=30$ km/s, $z_{cut}=6$ (for gas cooling after reionization).
- Galform reads Aquarius merger trees and particle data, and is able to track the evolution of a subhalo after it disrupts (follows most bound particle).
- ***** "Type1s" (satellites in surviving subhalos)
- "Type2s/orphans" (satellites in sub-resolution subhalos).

"Type2/Orphans": sub-resolution subhalos

Galform includes criteria for merging of orphans following Chandrasekhar timescale (see Simha&Cole17)

"Type2/Orphans": sub-resolution subhalos

Galform includes criteria for merging of orphans following Chandrasekhar timescale (see Simha&Cole17)

Abundance of MW satellites: luminosity function

Radial distribution

Radial distribution: DMO subhalos within 300 kpc of the MW

- At higher resolution, more subhalos near the center
- Levels L1,2,3 are converged for Vmax>10 km/s
- (!) But missing disrupted subhalos

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham,

Radial distribution: galaxies within 300 kpc of the MW

Radial distribution: galaxies within 300 kpc of the MW

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

Characteristics of L1 "orphans"

Maximum subhalo mass and circular velocity

Characteristics of L1 "orphans"

z=o orbital properties

Approximated peri & apo by integrating orbit in z=0 host potential, starting from most-bound particle pos and vel at z=0

- Predicted nearby MW satellites have very small peri and apocenters.
- Eccentricities similar to known MW sats

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

 As resolution increases, orphans are restricted to objects having earlier infall times: At HR, objects are more resilient to stripping, and only those that suffer stripping for longer end up artificially disrupted.

Galaxy (stellar component) disruption due to tidal stripping

 Although there is always a bound DM remnant, we should consider the stellar mass loss of satellites due to tidal stripping

- What happens with the stars during tidal stripping is heavily dependent on the particular energy distribution within the halo.
- Assuming an exponential distribution, there is a relation between bound mass-loss and luminosity loss.
- For the bound mass loss we follow the empirical tidal-track framework from Errani&Navarro21

Predicted "observable" radial distribution of MW satellites

We calculate bound mass loss, and luminosity loss, using the Errani&Navarro21 framework.

To obtain **final stellar masses after stripping**, we assume M/L ratio = 1.6 (dSph, Woo+08)

Predicted "observable" radial distribution of MW satellites

We calculate bound mass loss, and luminosity loss, using the Errani&Navarro21 framework.

To obtain **final stellar masses after stripping**, we assume M/L ratio = 1.6 (dSph, Woo+08)

Summary

We need to correct our cosmological simulations for artificial disruption if we want to be able to study the ultrafaint population of MW satellites
Semi-analytical models like GALFORM represent the best way forward in the study of very small galaxies, given the current computational (hydro) possibilities
Still much work/understanding needed to reach a proper "model for orphan treatment".
Reproducing the MW's satellite radial distribution is not a problem for LCDM and galaxy formation models based on H-cooling.
We predict the discovery of many very faint, nearby (<20kpc) MW satellites

Thank you 谢谢

The 2nd Shanghai Assembly on Cosmology and Structure Formation - I.Santos-Santos (ICC, Durham)

LCDM at small scales

What is Dark Matter?