Formation of massive disc galaxies in the IllustrisTNG simulation

Speaker: Guangquan Zeng

Supervisors: Prof. Liang Gao, Dr. Lan Wang

2023, Shanghai

Motivation

As predicted by the standard hierarchical model of galaxies formation,

- massive galaxies at low z should have experienced many mergers,
- so they are likely to have an elliptical morphology.

This prediction is statistically consistent with observations. (e.g. Buitrago et al. 2013; Conselice 2014; van der Wel et al. 2014)

However, a number of massive disc galaxies at low z were also reported in observations. (e.g. Ogle et al. 2016, 2019; Luo et al. 2020)

Sample Selection

We use the kinematics-based bulge-to-total stellar mass ratio, $(B/T)_{kin}$, to quantify the morphology of simulated galaxies in TNG100-1.

large B/T for more elliptical

Sample Selection

We select out 567 massive galaxies at z = 0 in TNG100-1, 83 of them are massive disc galaxies and 142 are massive elliptical galaxies.

• Massive: $M_{*,z=0} > 8 \times 10^{10} M_{\odot}$

• **Disc:** $(B/T)_{kin,z=0} < 0.3$

• Elliptical: $(B/T)_{kin,z=0} > 0.9$

B/T distribution in different stellar mass ranges

Morphology Evolution of Massive Galaxies

- In general, massive galaxies have large $(B/T)_{kin}$ at high z. The $(B/T)_{kin}$ decreases with time till $z=2\sim3$, then increases gradually.
- After $z\sim 2$, massive ellipticals grow their $(B/T)_{kin}$ relatively fast. In contrast, the massive discs keep decreasing their $(B/T)_{kin}$.

Three Different Evolution Pathways for Massive Disc Galaxies

- constant disc 8.4% have quiet merger histories
- survived disc 37.3% experience mergers but survive to remain discy
- revived disc 54.2% have a significant increase in $(B/T)_{\rm kin}$ in history, but finally become discs again

Morphology Change of the Latest (and at z < 1) Major Merger of Each Massive Galaxy

- In general, major mergers turn galaxies into a more bulge-dominant morphology.
- Morphology change has weak dependence on cold gas fraction (gas-rich vs gas-poor) and orbital configuration (prograde vs retrograde) of the merging system.

Merger Orbit Type: Head-on collision vs Spiral-in falling

At each snapshot, the satellite is

- heading to the central straightly for $\theta=0^\circ$
- on a circular orbit around the central for $\theta=90^\circ$

Then, we calculate the $\overline{\theta} = \frac{1}{n} \sum_{i=1}^{n} \theta_i$ to represent the overall orbit type:

- ullet head-on orbit for a small $\overline{ heta}$
- ullet spiral-in orbit for a large $\overline{ heta}$

A strong dependence of remnant morphology on orbit type

- ullet Almost all discy remnants correspond to spiral-in mergers with large $\overline{ heta}$
- ullet Most bulge-dominated remnants are results of head-on collisions with small $\overline{ heta}$

Conclusions

- Three different evolution pathways of massive disc galaxies:
 - 8.4% of them have quiet merger histories and preserve disc morphology since formed. (constant disc)
 - 37.3% experience prominent mergers but survive to remain discy. (survived disc)
 - 54.2% have a significant increase in bulge components in history, then become discs again till present time. (revived disc)
- We find a strong dependence of remnant morphology on the orbit type of major mergers. Specifically, major mergers with a spiral-in (head-on) orbit mostly lead to discy (elliptical) remnants.