

DO ESTADO DE SÃO PAULO

Galaxy Cluster Mass Estimation Through The Splashback Radius.

Gabriel-Silva and Sodré (submitted)

Credit: SPARTA

1. Introduction

Mass Through Splashback.

Spherical Collapse

- □ Traditional definitions of halo boundary come from spherical collapse, where solutions point that the system is "virialized" inside a sphere of density ~ 200 ρ_∧, resulting in the R₂₀₀;
- Problem: a lot of satellite galaxies found outside R₂₀₀ (Wetzel+2014) and subhalos getting striped even far (Behroozi+2014);
- Bigger problem: any definition which rely on spherical overdensity can result in pseudo-evolution (Diemer+2013);

Solution: Splashback

- **G** First orbital apocenter of accreted matter;
- Physical boundary separating the orbiting (~virialized) region from the infalling region;
- Most natural halo radius: M_{sp} = M(<R_{sp}) includes all the matter that was accreted by a given redshift z;
- □ Not sensitive to pseudo-evolution.
- Directly observed by modeling the surface number density (More+2016; Adhikari+2016; Umetsu+2017).

Mass Through Splashback.

2. Data & Methods:

Cumulative distributions

Data

- Weak-lensing mass catalog (Sereno2015, Herbonnet+2020)+ SDSS spectroscopic data (~60 clusters);
- □ Mock catalog (Araya-Araya+2021) (~30 clusters);
- **Cluster membership:**

$$\Box |\Delta_v| < 3\sigma_v$$

□ r < -20.13 mag

Methods

- **Cumulative model:**
 - $\Box \qquad \mathsf{N}(\mathsf{<}\mathsf{R}) = 2\pi\mathsf{\int}\mathsf{\Sigma}(\mathsf{R})\mathsf{R}\mathsf{d}\mathsf{R}$
 - $\Box \quad \Sigma = \sum_{1-halo} f_t + \sum_{2-halo}$
 - $\Box \quad f_t = \exp[-(R/R_t)^t]$
 - $\Box \qquad \sum_{2\text{-halo}} = \rho_m [(\dot{R}/r_{out})^{1-\gamma}\beta_{func} + 1]$
 - $\Box \qquad \Sigma_{1-halo} = Sérsic... or NFW...$
- Splashback mass:
 - $\Box \qquad M(<r) = 4\pi \int r^2 M_{200} dr / (4\pi r_s^3 g_c) f_t / [x(1+x)^2]$

$$\Box \quad Msp \equiv M($$

3. Results: Model & Constraints

RATIO R_{sp}/R_{200m} ?

Parameter	Value	Type
$ ho_s$	0 - 500	Uniform
r_s	0.1 - 1.5	Uniform
R_t	0.1 - 8.0	Uniform
au	4 ± 0.8	Gaussian
$ ho_m$	0 - 100	Uniform
$r_{ m out}$	1.5	Fixed
γ	1.7 ± 0.4	Gaussian

Mass Through Splashback.

Model Selection

- Tested on stacked profiles;
- □ Similar performances between models;
- □ NFW produces larger R_{sn};
- □ In terms of χ^2 , AlČ and BIC, NFW outperforms Sérsic model;
- □ Same metrics show that a truncation function better fits the data.

Center Definition

- □ The choice of cluster center does not affect the results;
- Importantly, no highly perturbed clusters in the samples;
- $\Box \quad R_{sp}/R_{200m} \approx 1;$
- Miscentering maybe does not play an important role.

Magnitude Limit

- Magnitude limit of the sample does not change R_{sp} distributions;
- $\Box \quad R_{sp}/R_{200m}^{sp} \approx 1;$
- Could indicate that Dynamical Friction (DF) does not affect R_{sp} measurements;
- Importantly, maybe the galaxies selected by these limits are not massive enough to in fact experience DF.

Galaxy Colors

- Blue galaxies have systematically lower R_{sp} than red galaxies and all population;
- □ Similar to Adhikari+2020;
- Could indicate that blue galaxies are recent infallers and have not reach their orbit apocenter yet.

Dynamical State

- Distinction made by:
 - $\Box \quad \Delta m_{1,4} < 1 \text{ mag};$
 - \Box $D_{\chi-BCG} > 0.02R_{200c};$
- Importantly, no highly perturbed clusters in the sample;
- $\hfill \square$ Perturbed clusters have greater R_{sp}/R_{200m} ratio.

M_{sp} - R_{sp} Relation

- $\label{eq:mass-state} \begin{array}{c} \square & \mbox{Mass fitting shows redshift dependence:} \\ \square & \mbox{M}_{sn} \propto (1\!+\!z)^{\alpha} \, R_{sn}^{\ \beta} \end{array}$
- □ Strong correlation between R_{sp} and M_{sp} (dispersion ~0.15 dex);
- Including or not a redshift dependence do not change significantly the results (redshift interval is too small for proper fitting).

Mass Through Splashback.

4. Future Perspectives:

Photometry?

\mathbf{R}_{sp} from Photo-zs

- □ Pretty feasible!
- Contamination impact a lot on the results, lowering the values;
- By setting a fixed interval and re-calibrating the M_{sp}-R_{sp} relation, we could estimate cluster sizes and masses solely based on photometric information.

10^{3} N(< R) 10^{2} Photo-z Interval 1σ . 10^{1} 2σ , $3\sigma_{z}$ $\frac{d \log \Sigma}{d \log R}$ -1Spectroscopic R_{sp} $^{-2}$ **...** 10^{-1} 10^{0} R/R_{200m}

Coma Cluster from SDSS

Thank you!

lucasgabriel@usp.br

Expanding The Boundaries Of Dark Matter Halo Conference Shanghai, China, 05-29-2025

Lucas Gabriel Silva PhD Student at IAG/USP