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Dynamical regimes of galaxy clusters

» Turnaround Average V.4 of the 1697 TNG
. Infall clusters with M,y,. > 10*Mg

. Orbiting and 0.01 <z<1.04
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The splashback radius

Inner boundary of the infall

region?
R .

VITI

RZOOm’ RZ()OC

More et al. (2015)

 Physical meaning studied with CDM
only simulations (Diemer et al. 2014+)

. Signatures from galaxies?
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Similar redshift dependence
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Comparison between K, . o, and R

Similar redshift dependence

The three radii

coincide to within 1o

Extended view of the
splashback radius as inner
boundary of clusters’ infalling
region

0.00.102030405060.708091.0 (More details in Pizzardo et al. 2024, A&A, 683, A82)
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Dynamical radii and cluster growth

: : between R, ( ~ R, 4) and
. At peak in radial velocity — maximum accretion
: Rspl < Rvmin < Rturn

These radii inform the
study of cluster growth




The growth of clusters

Mass accretion rate (MAR) Sy Wy From merger trees:

sensitive to internal e an .
properties, growth model, % . of the mass later

dark energy S A 00

clusters accrete half

A ‘ i : “ |  .‘{ ' KES O, 2 = 1.9

ki oy (Credits: NASA, ESO)

A e e o [ (Credits: NASA, ESA)

We develop a method to obtain MAR based on observations
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Strong correlation with

cluster mass and redshift

o+ Mot & My (X'2)
o Linp & Z (X Myg0)

(More details in Pizzardo et al. 2023, A&A, 680, A48)
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Conclusions

- We use the galaxy radial velocity profiles v, of 1697 lllustrisTNG clusters

to explore their infalling region

- V.4 allows to derive turnaround radius and minimum radial velocity radius

« We develop two new dynamical radii that mark the inner boundary of the

infall region: Rinﬂ and RGV/Vrad

+ R, s and R coincide with Ry, to within lo

O V/ Viad

- We show how galaxies as well as matter particles show clear signatures of
the splashback physics

» We show how dynamical radii inform the observable study of cluster growth.
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Data retrieval ——
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Calibration of the MAR

Mock catalogues of 1318 TNG clusters
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Caustic vs True mass profile

— median profile — median profile — median profile

T/RQOOC

(More details in Pizzardo et al. 2023, A&A, 675, A56)
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Expectations for M, _;,

Strong correlation with cluster mass
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The infall time, 7. .
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Linear motion with non-constant
Newtonian acceleration
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The infall time, 7. .

Time for the center of the infalling
shell to reach R,

Linear motion with non-constant
Newtonian acceleration

1.8 20 22 24 26 2.8
Rvmm/RQOOc

Strong correlation with redshift

Weak correlation with cluster mass
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MAR: results

Strong correlation with

clusters’ mass and redshift

MAR ~ 10%* — 10°Mg/yr
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Caustic MARs agree with true
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Comparison with merger trees and observations

Fakhouri (2010)
—— Diemer (2017)

MARs within 1o from merger trees

NI | MARSs in agreement with real clusters MARs

* HectoMAP (P22)

MAR correlates with cluster’s mass and

redshift, MAR ~ 10% — 10°Mg/yr

(More details in Pizzardo et al. 2023, A&A, 680, A48)
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Future prospects

Large samples of clusters with dense

spectroscopy up to ~ 4R,y and z S 1
will enable measurement of MAR

WEAVE on WHT,
MSE on CFHT, and
PFS on Subaru

Fiber connectors |/ /

Tertiary mirrorfloor
(IR side)

_ i AN
Nasmyth floor / . :
(IRside).—7 7 -

Fiber cable

Prime Focus
Instrument

Metrology camera
as a Cassegrain
instrument
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The accretion model
@

If AR = dr

MAR suitable for observations

M., ., set to optimize observed versus true M(r)

I._from linear motion with non-constant acceleration

F # 1 links MAR to MAR,

10"
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" fractionof v .
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Infall time: correlation with cluster redshift

Fixed cluster mass
Low redshift
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Infall time: cluster mass

Fixed cluster redshift

. Low mass
S
‘\ — —
' Vinf Vinf
Cluster . — yr
| e
center ]
............... e
" RVmin
4
High-mass clusters: deeper
ling = Z At, gravitational potential, but more
- Vi = 20,57 extended infall region
AV : :
" No correlation with mass
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Infalling shell: cluster redshift

Clusters are denser at higher
redshifts, but:

» Physical volume of the shell
decreases with increasing

redshift

» Mass distributions slightly
change with redshift

Weak correlation between shell
mass and redshift

YAS



Galaxy and Dark Matter based radii

- Small, positive bias between

R, from galaxies and total
rad

matter

» Consistent with analogous

results for R, (O'Neil et al. 2021)
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