The splashback radius and the radial velocity profiles of galaxy clusters in IllustrisTNG

Expanding the boundaries of dark matter halo Shanghai Jiaotong University

> Michele Pizzardo May 26th, 2025

中央研究院 天文及天文物理研究所 ACADEMIA SINICA Institute of Astronomy and Astrophysics

- Turnaround
- Infall
- Orbiting

- Turnaround
- Infall
- Orbiting

Average v_{rad} of the 1697 TNG clusters with $M_{200c} > 10^{14} {\rm M}_{\odot}$ and $0.01 \le z \le 1.04$

- Turnaround
- Infall
- Orbiting

Average v_{rad} of the 1697 TNG clusters with $M_{200c} > 10^{14} M_{\odot}$ and $0.01 \le z \le 1.04$

- Turnaround
- Infall
- Orbiting

Average v_{rad} of the 1697 TNG clusters with $M_{200c} > 10^{14} {\rm M}_{\odot}$ and $0.01 \le z \le 1.04$

- Turnaround
- Infall
- Orbiting

Average v_{rad} of the 1697 TNG clusters with $M_{200c} > 10^{14} M_{\odot}$ and $0.01 \le z \le 1.04$

The splashback radius

The splashback radius Inner boundary of the infall region?

dhikari et al. 20

- Physical meaning studied with CDM
 only simulations (Diemer et al. 2014+)
- Signatures from **galaxies**?

The inflection point of $v_{rad}(r)$

The inflection point of $v_{rad}(r)$

At R_{inf} maximum

radial change of $v_{rad}(r)$

 \sim

infall \longrightarrow orbits

The inflection point of $v_{rad}(r)$

At $R_{infl} \longrightarrow maximum$

radial change of $v_{rad}(r)$

 \sim

infall \longrightarrow orbits

infall — orbits

4.0

4.0

 $R_{200c} < R_{\sigma_{
m v}/{
m v_{rad}}} < R_{v_{min}}$ as $R_{
m infl}$ and K

 $R_{200c} < R_{\sigma_{
m v}/{
m v_{rad}}} < R_{v_{min}}$ as $R_{
m infl}$ and K

Comparison between $R_{\rm spl}$, $R_{\rm infl}$, and $R_{\sigma_{\rm v}}/v_{\rm rad}$

 \boldsymbol{Z}

Similar redshift dependence The three radii coincide to within 1σ **Extended view of the** splashback radius as inner **boundary of clusters' infalling** region

Comparison between $R_{\rm spl}$, $R_{\rm infl}$, and $R_{\sigma_{\rm v}}/v_{\rm rad}$

Z

Similar redshift dependence The three radii coincide to within 1σ **Extended view of the** splashback radius as inner boundary of clusters' infalling region

(More details in Pizzardo et al. 2024, A&A, 683, A82)

Dynamical radii and cluster growth

- Infall region: between $R_{\rm spl}$ ($\simeq R_{\rm infl}$) and $R_{\rm turn}$
- At R_v peak in radial velocity maximum accretion
- $R_{\rm spl} < R_{\rm v_{min}} < R_{\rm turn}$

These radii inform the study of cluster growth (mass accretion)

The growth of clusters

Mass accretion rate (MAR) sensitive to internal properties, growth model, dark energy

Abell 1689, z = 0.18

We develop a method to obtain MAR based on observations

From merger trees: clusters accrete half of the mass later than z = 0.5

JKCS 041, z = 1.9(Credits: NASA, ESO)

 $MAR = \mathscr{K} \frac{M_{shell}}{t_{inf}}$

 $MAR = \mathscr{K}^{M_{shell}}$ *t*_{inf}

M_{shell} optimized for observations with caustic technique (Diaferio 1999; Serra et al. 2011)

t_{inf} from linear motion with non-constant acceleration

 $\mathcal{K} \neq 1$ links MAR to MAR

 $MAR = \mathscr{K}^{M_{shell}}$ *t*_{inf}

M_{shell} optimized for observations with caustic technique (Diaferio 1999; Serra et al. 2011)

t_{inf} from linear motion with non-constant acceleration

 $\mathcal{K} \neq 1$ links MAR to MAR

 $MAR = \mathscr{K}^{M_{shell}}$ *t*_{inf}

M_{shell} optimized for observations with caustic technique (Diaferio 1999; Serra et al. 2011)

t_{inf} from linear motion with non-constant acceleration

 $\mathcal{K} \neq 1$ links MAR to MAR

MAR: results

MAR: results

Strong correlation with cluster mass and redshift

- $M_{\rm shell} \propto M_{200} (\propto z)$
- $t_{inf} \propto z (\propto M_{200})$

- MAR $\sim 10^4 10^5 M_{\odot}$ /yr for clusters with mass $10^{14} - 10^{15} M_{\odot}$ and $0 \leq z \leq 1$
- Caustic (observable) MARs agree with true MARs within $\sim 10\%$
- Our MARs in agreement with merger-tree based MARs (McBride+ 2009, Fakhouri+ 2010, Diemer+ 2017)

10

MAR: results

Strong correlation with cluster mass and redshift

- $M_{\rm shell} \propto M_{200} (\propto z)$
- $t_{inf} \propto z (\propto M_{200})$

- MAR $\sim 10^4 10^5 M_{\odot}$ /yr for clusters with mass $10^{14} - 10^{15} M_{\odot}$ and $0 \leq z \leq 1$
- Caustic (observable) MARs agree with true MARs within $\sim 10\%$
- Our MARs in agreement with merger-tree based MARs (McBride+ 2009, Fakhouri+ 2010, Diemer+ 2017)

(More details in Pizzardo et al. 2023, A&A, 680, A48)

10

Conclusions

- to explore their infalling region
- infall region: R_{infl} and $R_{\sigma_v/v_{rad}}$
- $R_{
 m infl}$ and $R_{\sigma_{
 m v}/{
 m v_{rad}}}$ coincide with $R_{
 m spl}$ to within 1σ
- the splashback physics

We use the galaxy radial velocity profiles V_{rad} of 1697 IllustrisTNG clusters

 V_{rad} allows to derive turnaround radius and minimum radial velocity radius We develop two new dynamical radii that mark the inner boundary of the

• We show how galaxies as well as matter particles show clear signatures of

• We show how dynamical radii inform the observable study of cluster growth.

Backup slides

The caustic technique

- Mass profile $M^{C}(r)$ beyond virialization
- It exploits the *pattern* of infall galaxies
- Independent from redshift and dynamical state

• $M^{C}(r)$ within ~ 10% of true $M^{3D}(r)$ up to $4R_{200c}$; uncertainty $\sim 20\% - 40\%$

Credits: J. Sohn 13
The caustic technique

- Mass profile $M^{C}(r)$ beyond virialization
- It exploits the *pattern* of infall galaxies
- Independent from redshift and dynamical state

• $M^{C}(r)$ within ~ 10% of true $M^{3D}(r)$ up to $4R_{200c}$; uncertainty $\sim 20\% - 40\%$

Credits: J. Sohn 13

The caustic technique

The caustic technique Data retrieval

ABELL 1314								
id	RA [deg]	δ [deg]	Z	g				
1	177.318260	49.589084	0.47415	19.3198				
2	177.379809	49.606580	0.05509	16.9693				
3	177.336652	49.615467	0.09051	17.4208				
4	177.352944	49.589621	0.05865	16.5336				
5	177.383568	49.542269	0.29258	18.8525				

The caustic technique Data retrieval

	ABELL 13				
id	RA [deg]	δ [deg]			
1	177.318260	49.589084			
2	177.379809	49.606580			
3	177.336652	49.615467	(
4	177.352944	49.589621			
5	177.383568	49.542269	(

Caustic technique

 $f_{2D}(r,v) = \kappa$

The caustic technique Data retrieval

	Abell 13				
id	RA [deg]	δ [deg]			
1	177.318260	49.589084			
2	177.379809	49.606580			
3	177.336652	49.615467			
4	177.352944	49.589621			
5	177.383568	49.542269			

 $-2\phi = \langle v_{esc}^2 \rangle$

 $M(< r) \propto$ **J**()

Caustic technique

 $f_{2D}(r,v) = \kappa$

Observable definition of MAR

Observable definition of MAR

 $MAR = \mathscr{R}^{M_{shell}}$ *t*_{inf}

Observable definition of MAR

 $M_{\rm shell}$ optimized for observations with CT

tinf from linear motion with non-constant acceleration

 $\mathscr{K} \neq 1$ links MAR to MAR

 $MAR = \mathscr{K}^{M_{shell}}$ *t*_{inf}

Mock catalogues of 1318 TNG clusters

Mock catalogues of 1318 TNG clusters

• Optimal shell thickness (Av_{min})

A = 0.72

Mock catalogues of 1318 TNG clusters

- Optimal shell thickness (Av_{min})
- \mathscr{K} to link MAR to MAR_t

A = 0.72 $MAR_{t} \simeq 0.35MAR$

Caustic vs True mass profile

(More details in Pizzardo et al. 2023, A&A, 675, A56)

Expectations for M_{shell}

Strong correlation with cluster mass

Weak correlation with redshift

Time for the center of the infalling shell to reach R_{200c}

Linear motion with non-constant Newtonian acceleration

Time for the center of the infalling shell to reach R_{200c}

Linear motion with non-constant Newtonian acceleration

Strong correlation with redshift

Time for the center of the infalling shell to reach R_{200c}

Linear motion with non-constant Newtonian acceleration

Strong correlation with redshift

Time for the center of the infalling shell to reach R_{200c}

Linear motion with non-constant Newtonian acceleration

Strong correlation with redshift

Weak correlation with cluster mass

MAR: results

MAR: results

Strong correlation with clusters' mass and redshift $MAR ~ 10^4 - 10^5 M_{\odot}/yr$

MAR: results

Strong correlation with clusters' mass and redshift $MAR ~ 10^4 - 10^5 M_{\odot}/yr$

Caustic MARs agree with true MARs within $\sim 10\,\%$

Comparison with merger trees and observations

MARs within 1σ from merger trees

MARs in agreement with real clusters MARs

MAR correlates with cluster's mass and redshift, MAR $\sim 10^4 - 10^5 {\rm M}_{\odot}/{\rm yr}$

(More details in Pizzardo et al. 2023, A&A, 680, A48)

Future prospects

Large samples of clusters with dense spectroscopy up to ~ $4R_{200c}$ and $z \lesssim 1$ will enable measurement of MAR

PFS on Subaru

 $MAR_{t} = 4\pi\rho(R_{v_{\min}})R_{v_{\min}}^{2}v_{\min}$

 $MAR_{t} = 4\pi\rho(R_{v_{\min}})R_{v_{\min}}^{2}v_{\min}$

If $\Delta R = \mathrm{d}r$

MAR suitable for observations

If $\Delta R = \mathrm{d}r$

MAR suitable for observations

 $M_{\rm shell}$ set to optimize observed versus true M(r)

The accretion model

If $\Delta R = \mathrm{d}r$

MAR suitable for observations

 $M_{\rm shell}$ set to optimize observed versus true M(r)

The accretion model

If $\Delta R = \mathrm{d}r$

MAR suitable for observations

 $M_{\rm shell}$ set to optimize observed versus true M(r)

t_{inf} from linear motion with non-constant acceleration

The accretion model

If $\Delta R = \mathrm{d}r$

MAR suitable for observations

 $M_{\rm shell}$ set to optimize observed versus true M(r)

t_{inf} from linear motion with non-constant acceleration

 $\mathscr{K} \neq 1$ links MAR to MAR_t

Infall time: correlation with cluster redshift

Fixed cluster mass

 $t_{\rm inf} = \sum \Delta t_n$ $\Delta t_n = \frac{-v_{\rm inf} - \sqrt{v_{\rm inf}^2 - 2a_n \Delta r}}{-v_{\rm inf}^2 - 2a_n \Delta r}$

• $\Delta t_n < \Delta t_n$

Lower cluster-centric distance

Infall time: cluster mass

Fixed cluster redshift

High-mass clusters: deeper gravitational potential, but more extended infall region No correlation with mass

Infalling shell: cluster redshift

Clusters are denser at higher redshifts, but:

- Physical volume of the shell decreases with increasing redshift
- Mass distributions slightly change with redshift

Weak correlation between shell mass and redshift

Galaxy and Dark Matter based radii

- Small, positive bias between $R_{v_{rad}}$ from galaxies and total matter
- Consistent with analogous results for $R_{
 m spl}$ (O'Neil et al. 2021)
- $R_{v_{\min}}$ and R_{turn} are unbiased

Galaxy and Dark Matter based radii

- Small, positive bias between $R_{v_{rad}}$ from galaxies and total matter
- Consistent with analogous results for $R_{
 m spl}$ (O'Neil et al. 2021)
- $R_{v_{\min}}$ and R_{turn} are unbiased

