

Dynamics of halos: Boundary, accretion and tidal stripping

Zhaozhou Li 李昭洲

*Marie Skłodowska-Curie fellow

The Hebrew University of Jerusalem → Nanjing University (from June)

Jiaxin Han, Wenting Wang, Yipeng Jing, Qingyang Li (SJTU), Yongzhong Qian (U Minnesota), Donghai Zhao (Guilin Tech), Ting Li (U Toronto) Avishai Dekel, Nir Mandelker (Hebrew U), Fangzhou Jiang (PKU), Jonathan Freundlich (Strasbourg)...

SJTU May 25, 2025

Formation and dynamical evolution of halos

Key dynamical drivers
Accretion/mergers
Tidal environment (esp. for satellites)
Baryonic feedback (mostly for inner halo)

Topics I wish discuss

- Measuring halo: mass/boundary of MW
- Assembly of halo structure
- Modeling dynamical evolution

Satellites: tracers of halo structure; also interesting subjects themselves

I. Measuring the Milky Way halo

Fornax Dwarf

MW mass: placing the MW in context

MW mass profile: understanding the MW structure

Measure the Milky Way Mass/Boundary

- Difficult! --obs. error and incompleteness in MW outer halo
- Simulation-based model for motion of MW satellite galaxies
 - ✓ Realistic efficient model learnt from simulations (Li+ 17,19; initial orbits: Li+20a)

σ_{log Mh} [dex]

0.01

- ✓ Robust estimates of MW mass profile >100kpc (Li+ 20b)
- \checkmark Reversely: observation as benchmark of simulations
- Data-driven model for MW general tracers (Li+ 25)
 - ✓ Optimal efficiency under minimum assumptions of oPDF (Han+16)
 - \checkmark Being applied to halo stars
- Depletion radius of MW halo (Li & Han 21)

Depletion radius as a natural halo boundary

Fong & Han 2021 Gao, Han+ 2023 Zhou, Han+ 2023, 24

See Jiaxin, Jiale, Yifeng's talks

Depletion radius as a natural halo boundary

Fong & Han 2021 Gao, Han+ 2023 Zhou, Han+ 2023, 24

Regional map around the Milky Way (MW)

from nearby dwarf galaxies within 3Mpc

Milky Way mass beyond virial radius

Simulations: $\bar{\rho}(\langle r_{\rm id}) \simeq 60 \rho_m; \ \bar{\rho}(\langle r_{\rm ta}) \simeq 20 \rho_m$

See Jiale's talks for updates

Early formed halos have smaller depletion radius?

Li & Han 2021

II. Assembly of halo structure

Subhalo infall orbits: initial condition for central/satellite evolution

➡ Crucial for (semi)analytical

models (e.g. Yang+ 2011, Jiang+ 2020)

Satellite halo/galaxy

- dynamical friction
- tidal heating and stripping, disruption...

Central galaxy

- morphology transformation
- formation of stellar halo

Host halo

 assembly of dynamical structure

Idealized scheme: spherical collapse

Real world: highly nonlinear \Rightarrow We need simulations!

Unified model of initial subhalo orbits validated for z<6

Li et al. 2020b

cf. Wang05, Benson05, Wetzel11, Jiang14, Shi15

Initial subhalo orbits in phase space

15

Build-up of anisotropic halos

- Outer halo: massive halos have more radial accretion pattern
 - \Rightarrow Higher velocity anisotropy expected
- Inner halo: universal not well understood yet orbital evolution during fast growth phase?

velocity anisotropy of DM particles in TNG

similar trend for orbits of stars and satellites in TNG

also cf. Lemze+ 2012, Shi+ 2015

Build-up of halo phase-space distribution

ta

III. Modeling dynamical evolution of halo structure

Galaxy/halo structural diversities: Potential challenge to ACDM

Modeling the Galaxy/Halo Structural Evolution?

 \Rightarrow Why difficult:

- So many distinct dynamical processes
- Violent Relaxation: 50-year challenge (since Lynden-Bell 1967!)

★ Breakthrough: CuspCore2 model unified framework: accretion, outflow, dyn heating, tidal stripping, etc accurate, cheap, and flexible

Tumlinson+ 2017

CuspCore2: accurate model for general dyn. evolution

Li+ 2023 (arXiv:2206.07069) Li+ 2025, in prep

Zhaozhou Li, HUJI

Model vs simulation: accurate but better generalizability

Application 1: Tidal stripping of satellite galaxies

Truncation in energy (Errani+ 2021, Amorisco 2021) + re-virialization via CuspCore2 model

Zhaozhou Li, HUJI

Application 1: DM-deficient Satellite Galaxies

Application 2: DM-deficient/Ultra-diffuse Field Galaxies

Multi-episode gas outflows ightarrow galaxy size \uparrow and DM density \downarrow

Zhaozhou Li, HUJI

Dynamics of halo structures

- Measuring mass and boundary from satellite kinematics: example of Milky Way halo
 - ✦ depletion radius: measurable, separate growing halo from environ.
- Initial accretion orbits: insights into halo structure build-up
 - massive halos have more radial accretion and vel. anisotropy
 - simple model for halo phase-space distribution
- Unified model for structural evolution w/ outflows, dynamical heating, and tidal stripping
 - formation of DM-deficient galaxies: differential response of DM/stars

lizz.astro@gmail.com

Zhaozhou Li, HUJI

0

-2

-1.5

 $\log r/R_{\rm vir.0}$