

Haloes in brief

In theory, haloes are:

- > Overdense peaks
- > Gravitationally bound

Why are they relevant?

- > Halo Mass Function
- > Galaxy-Halo connection
- > Halo Model for non-linear P(k)
- > Mass modeling / Scaling relations

Detailed studies require simulations

Haloes in simulations: Weird and Wonderful

Haloes in radial phase space

But why not use the potential??

But why not use the potential??

Large scale gradients!

Cleaning the Gradients

 $\phi = \phi_{\rm int} + \phi_{\rm ext}$

Cleaning the Gradients

- $\phi = \phi_{\rm int} + \phi_{\rm ext}$
- $\phi = \phi_{\text{self}} + \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \Delta x_i \partial_i \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \frac{1}{2} \Delta x_i \Delta x_j \partial_i \partial_j \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \cdots$

Cleaning the Gradients

 $\phi = \phi_{\rm int} + \phi_{\rm ext}$

$$\phi = \phi_{\text{self}} + \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \Delta x_i \partial_i \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \frac{1}{2} \Delta x_i \Delta x_j \partial_i \partial_j \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \cdots$$

$$\begin{aligned} \phi &= \phi_{\text{int}} + \phi_{\text{ext}} & \text{Absolute value of the potential} \\ \phi &= \phi_{\text{int}} + \phi_{\text{ext}} & \text{Uniform acceleration} \end{aligned} \quad \begin{aligned} &\text{No influence} \\ &\text{(in GR)} \end{aligned}$$
$$\phi &= \phi_{\text{self}} + \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \Delta x_i \partial_i \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \frac{1}{2} \Delta x_i \Delta x_j \partial_i \partial_j \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \cdots$$
$$\phi_{\text{boost}} &= \phi_{\text{self}} + \phi_{\text{ext}} - (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \nabla \phi_{\text{ext}} \end{aligned}$$

 $\phi_{\text{boost}} = \phi + (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \mathbf{a}_{\text{ext}}$

Internal dynamics are completely equivalent!

Bang! And the gradient is gone!

Goal: Turn this into a 'halo finder'

STRAWBERRY

STRucture Assignment With BoostEd RefeRence frame in cYthon

Goal: Turn this into a 'halo finder' binding check

STRAWBERRY

STRucture Assignment With BoostEd RefeRence frame in cYthon

To find a halo

 $\phi_{\text{boost}} = \phi + (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \mathbf{a}_{\text{ext}}$

Advantages:

> Physically motivated binding check

> Accounts for environment (Tides, Torques, etc...)

Disadvantages:

> Internal-External split -> III defined

> Local quantity -> Need an inital seed to start

Need to rely on a seed catalogue

Four-step roadmap

$$\phi_{\text{boost}} = \phi + (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \mathbf{a}_{\text{ext}}$$

- 1. First guess (FoF Halo)
- 2. Switch to accelerated frame
- 3. Fill potential well
- 4. Unbind particles

Visualising 1 halo

(Almost) Perfect Preening

(Almost) Perfect Preening 3 Selection using the potential: 2 Leaves us with **bound** population. Removes infalling and 0 splashback particles. -1 \leftarrow Stack of 100 haloes $^{-2}$ $M_{\rm bound} \sim 10^{14} h^{-1} {\rm M}_{\odot}$

2.5

 v_r/v_{200m}

-3

0.5

1.0

1.5

 r/r_{200m}

2.0

(Almost) Perfect Preening

Selection using the potential:

Leaves us with **bound** population.

Removes infalling and splashback particles.

 \leftarrow Stack of 100 haloes $M_{\rm bound} \sim 10^{14} h^{-1} {\rm M}_{\odot}$

Finally, an edge

The selection create an exponential cut-off in the halo profile beyond the virial radius.

Consistent with:

Adhikari et al. 2014 Diemer et al. 20XX Garcia et al. 2023 Salazar et al. 2024

And a bunch of other cool things discussed this week some of which I didn't know about before!!!

Boosted Haloes are Virialised!

$$\frac{-G}{T} = \frac{-\langle \mathbf{x} \cdot \mathbf{a} \rangle}{0.5 \langle \mathbf{v} \cdot \mathbf{v} \rangle} \sim 2$$

Discrepancy attributed to "external pressure"

Removing bound particles

Including unbound particles

(e.g. Shaw et al. 2006, Poole et al. 2006, and Davis et al. 2011)

Summary

The boosted potential framework provides a **physically motivated framework** to perform a **binding check**.

Boosted haloes are virialised and have edges.

Questions we can already answer.

When does infalling matter virialise?

How do the profiles change with redshift?

How does $_{M_{\rm boost}}$ relate to other masses? Look out for STRAWBERRY in the near future!

When do you bind?

$$N_{\rm dyn}(a|a_{\rm peri}) = \frac{\sqrt{2}}{\pi} \int_{a_{\rm peri}}^{a} \frac{1}{a} \sqrt{\frac{\bar{\rho}}{\rho_{\rm c}}} \mathrm{d}a,$$

Jiang et al. 2016

Median binding time is the first pericentric passage.

After 1st **apocentre**, ~80% of particles are bound.

~ Orbit based mass definitions

Where do you bind?

~ K-r Mass definition (Garcia et al. 2023, Salazar et al. 2024)

Profile evolution

Tight scaling relation

Tight relation

$$M_{\rm boost} \Leftrightarrow \Delta \phi_{\rm boost}$$

More unbound material surrounds haloes at higher redshift, deepening the potential.

Possible implications for known scaling relations.

