Splashback radius: Observations and challenges

Surhud More

Collaborators: Andrey Kravtsov, Benedikt Diemer, Neal Dalal, Hironao Miyatake, Masahiro Takada, Rachel Mandelbaum, Masamune Oguri, Ryoma Murata, Susmita Adhikari, Tomomi Sunayama, Dominik Zuercher, Divya Rana, Jitendra Joshi

Edges of dark matter halos

How many moos in a given volume?

How are the moos distributed?

Springel et al. 2005

• Halo occupation distribution models need differentiation between the one and the two halo terms.

May 27, 2025

Overdensity of FOF halos

- can be understood using percolation theory
- not 180 for b=0.2
- depends upon concentration
- non-trivial but understandable dependence on the number of particles.

Overdensity of FOF halos

SM, Kravtsov, Dalal et al. 2010

May 27, 2025

 can be understood using percolation theory

- not 180 for b=0.2
- depends upon concentration
- non-trivial but understandable dependence on the number of particles.

Spherical overdensity halos: Suffer from pseudo-evolution (Diemer, SM, Kravtsov 2013)

Edges of galaxy cluster halos

• A physical boundary that responds to the mass accretion history of the halo

Diemer and Kravtsov 2014 Adhikari and Dalal 2014 SM, Diemer and Kravtsov 2015

Edges of galaxy cluster halos

iccretion

mer and Kravtsov 2014 hikari and Dalal 2014 , Diemer and Kravtsov 2015

Early indications of splashback radius?

Number density of galaxies around Coma cluster

Splashback radius may not just be restricted to theoretical investigations

May 27, 2025

Early indications of splashback radius?

Splashback radius may not just be restricted to theoretical investigations

May 27, 2025

Cluster-galaxy cross-correlation

 SDSS redMaPPer galaxy clusters cross-correlated with SDSS photometric galaxies

- Model with the 3d DK14 profile in order to infer the location of the steepest slope
- Observed location did not match predictions
 - Systematics (dynamical friction, background subtraction, miscentering, halo averaging effects, weak lensing mass estimation, magnification bias)
 - Projection effects in sample selection

Busch et al. 2017, Zu et al. 2017, Sunayama & SM 2019

Expanding the boundaries of dark matter halo

SM et al. 2016, Baxter et al. 2017, See also Chiang et al. 2018

May 27, 2025

Optical selection effects on splashback radius determination

 Cluster finding algorithms typically assign membership to galaxies based on a division between cluster member and a background.

$$p_{\text{mem}} = \frac{\lambda u(x|\lambda)}{\lambda u(x|\lambda) + b(x)}$$

- Background assessment
 - Global (redMaPPer, Rykoff et al. 2014)
 - Local (CAMIRA, Oguri et al. 2014)

Systematics in modelling: assumption of spherical symmetry

See also: Sunayama 2023

May 27, 2025

Systematics in modelling: assumption of spherical symmetry

See also: Sunayama 2023

May 27, 2025

What about local background subtraction?

- Mock cluster finder based on local
 background subtraction
 - The 20 percent or so reduction biases in the splashback radius reduce (perhaps in the opposite direction)

Murata, Oguri, SM, et al. 2020

What about local background subtraction?

- Mock cluster finder based on local
 background subtraction
- The 20 percent or so reduction biases in the splashback radius reduce (perhaps in the opposite direction)

Murata, Oguri, SM, et al. 2020

Edges of HSC CAMIRA clusters

Murata, Oguri, SM, et al. 2020

 Subaru HSC allows us to access to deeper imaging and find clusters at higher redshifts

May 27, 2025

SZ galaxy clusters from Planck

About 13 percent statistical error

May 27, 2025

Expanding the boundaries of dark matter halo

Zuercher and More 2019 See also Shin et al. 2019, 2021

SZ galaxy clusters

• About 13 percent statistical error

May 27, 2025

Expanding the boundaries of dark matter halo

Zuercher and More 2019 See also Shin et al. 2019, 2021

X-ray galaxy clusters: RASS MCMF based on DECALS DR10

Expanding the boundaries of dark matter halo

Joshi, Rana, SM et al. (in prep) See also Divya Rana (talk tomorrow)

X-ray galaxy clusters: RASS MCMF based on DECALS DR10

- About 140 galaxy clusters selected based on X-ray luminosities
- Well measured weak lensing signal give masses
- The galaxy crosscorrelations show a splashback radius consistent with expectations.
- An 18 percent statistical error

Joshi, Rana, SM et al. (in prep) See also Divya Rana (talk tomorrow)

Expanding the boundaries of dark matter halo

May 27, 2025

Accretion rates inferred from current measurements

Expanding the boundaries of dark matter halo

Joshi, Rana, SM et al. (in prep) See also Divya Rana (talk tomorrow)

Satellite galaxies in galaxy clusters: orphan galaxy fractions

- Evidence of stripping in the inner halo regions
- Implications for upper limits on the orphan fractions

May 27, 2025

Expanding the boundaries of dark matter halo

Kumar, SM, Rana (2022) Kumar, SM, Sunayama (2024) Kumar & SM (2025, in review)

Wishlist and Challenges

Measurements of the splashback radius

- at few percent precision
- cluster selection separate from galaxies used to measure cross-correlations
- using features also in redshift space
- Constrain average mass accretion histories
 - Glean cosmological information
 - Use to understand what galaxy properties are correlated with accretion rates

Wishlist and Challenges

- Measurements of the splashback radius
 - at few percent precision
 - cluster selection separate from galaxies used to measure cross-correlations
 - using features also in redshift space
- Constrain average mass accretion histories
 - Glean cosmological information
 - Use to understand what galaxy properties are correlated with accretion rates

• Samples

 Obtaining large X-ray/SZ selected samples, tagged with different properties

• Tracers

- Galaxies (deep enough to avoid dynamical friction effects)
- ideally matter through weak lensing

Thank you!!!